x uchun yechish
x=-2
Grafik
Viktorina
Algebra
4 = \sqrt{ 26-5x } +x
Baham ko'rish
Klipbordga nusxa olish
4-x=\sqrt{26-5x}
Tenglamaning ikkala tarafidan x ni ayirish.
\left(4-x\right)^{2}=\left(\sqrt{26-5x}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
16-8x+x^{2}=\left(\sqrt{26-5x}\right)^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(4-x\right)^{2} kengaytirilishi uchun ishlating.
16-8x+x^{2}=26-5x
2 daraja ko‘rsatkichini \sqrt{26-5x} ga hisoblang va 26-5x ni qiymatni oling.
16-8x+x^{2}-26=-5x
Ikkala tarafdan 26 ni ayirish.
-10-8x+x^{2}=-5x
-10 olish uchun 16 dan 26 ni ayirish.
-10-8x+x^{2}+5x=0
5x ni ikki tarafga qo’shing.
-10-3x+x^{2}=0
-3x ni olish uchun -8x va 5x ni birlashtirish.
x^{2}-3x-10=0
Polinomni standart shaklga keltirish uchun uni qayta tartiblang. Shartlarni eng yuqoridan eng pastki qiymat ko'rsatgichiga joylashtirish.
a+b=-3 ab=-10
Bu tenglamani yechish uchun x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formulasi yordamida x^{2}-3x-10 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-10 2,-5
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -10-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-10=-9 2-5=-3
Har bir juftlik yigʻindisini hisoblang.
a=-5 b=2
Yechim – -3 yigʻindisini beruvchi juftlik.
\left(x-5\right)\left(x+2\right)
Faktorlangan \left(x+a\right)\left(x+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
x=5 x=-2
Tenglamani yechish uchun x-5=0 va x+2=0 ni yeching.
4=\sqrt{26-5\times 5}+5
4=\sqrt{26-5x}+x tenglamasida x uchun 5 ni almashtiring.
4=6
Qisqartirish. x=5 qiymati bu tenglamani qoniqtirmaydi.
4=\sqrt{26-5\left(-2\right)}-2
4=\sqrt{26-5x}+x tenglamasida x uchun -2 ni almashtiring.
4=4
Qisqartirish. x=-2 tenglamani qoniqtiradi.
x=-2
4-x=\sqrt{26-5x} tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}