Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{5}{2}x^{2}\times 4+5x\left(-\frac{4}{5}\right)=5\times 3
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 5x ga, 5,x ning eng kichik karralisiga ko‘paytiring.
10x^{2}+5x\left(-\frac{4}{5}\right)=5\times 3
10 hosil qilish uchun \frac{5}{2} va 4 ni ko'paytirish.
10x^{2}-4x=5\times 3
-4 hosil qilish uchun 5 va -\frac{4}{5} ni ko'paytirish.
10x^{2}-4x=15
15 hosil qilish uchun 5 va 3 ni ko'paytirish.
10x^{2}-4x-15=0
Ikkala tarafdan 15 ni ayirish.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 10\left(-15\right)}}{2\times 10}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 10 ni a, -4 ni b va -15 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 10\left(-15\right)}}{2\times 10}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16-40\left(-15\right)}}{2\times 10}
-4 ni 10 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16+600}}{2\times 10}
-40 ni -15 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{616}}{2\times 10}
16 ni 600 ga qo'shish.
x=\frac{-\left(-4\right)±2\sqrt{154}}{2\times 10}
616 ning kvadrat ildizini chiqarish.
x=\frac{4±2\sqrt{154}}{2\times 10}
-4 ning teskarisi 4 ga teng.
x=\frac{4±2\sqrt{154}}{20}
2 ni 10 marotabaga ko'paytirish.
x=\frac{2\sqrt{154}+4}{20}
x=\frac{4±2\sqrt{154}}{20} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{154} ga qo'shish.
x=\frac{\sqrt{154}}{10}+\frac{1}{5}
4+2\sqrt{154} ni 20 ga bo'lish.
x=\frac{4-2\sqrt{154}}{20}
x=\frac{4±2\sqrt{154}}{20} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{154} ni ayirish.
x=-\frac{\sqrt{154}}{10}+\frac{1}{5}
4-2\sqrt{154} ni 20 ga bo'lish.
x=\frac{\sqrt{154}}{10}+\frac{1}{5} x=-\frac{\sqrt{154}}{10}+\frac{1}{5}
Tenglama yechildi.
\frac{5}{2}x^{2}\times 4+5x\left(-\frac{4}{5}\right)=5\times 3
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 5x ga, 5,x ning eng kichik karralisiga ko‘paytiring.
10x^{2}+5x\left(-\frac{4}{5}\right)=5\times 3
10 hosil qilish uchun \frac{5}{2} va 4 ni ko'paytirish.
10x^{2}-4x=5\times 3
-4 hosil qilish uchun 5 va -\frac{4}{5} ni ko'paytirish.
10x^{2}-4x=15
15 hosil qilish uchun 5 va 3 ni ko'paytirish.
\frac{10x^{2}-4x}{10}=\frac{15}{10}
Ikki tarafini 10 ga bo‘ling.
x^{2}+\left(-\frac{4}{10}\right)x=\frac{15}{10}
10 ga bo'lish 10 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2}{5}x=\frac{15}{10}
\frac{-4}{10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{2}{5}x=\frac{3}{2}
\frac{15}{10} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{5}\right)^{2}
-\frac{2}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{5} olish uchun. Keyin, -\frac{1}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{3}{2}+\frac{1}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{5} kvadratini chiqarish.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{77}{50}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{2} ni \frac{1}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{5}\right)^{2}=\frac{77}{50}
x^{2}-\frac{2}{5}x+\frac{1}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{77}{50}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{5}=\frac{\sqrt{154}}{10} x-\frac{1}{5}=-\frac{\sqrt{154}}{10}
Qisqartirish.
x=\frac{\sqrt{154}}{10}+\frac{1}{5} x=-\frac{\sqrt{154}}{10}+\frac{1}{5}
\frac{1}{5} ni tenglamaning ikkala tarafiga qo'shish.