Baholash
\frac{26}{3}\approx 8,666666667
Omil
\frac{2 \cdot 13}{3} = 8\frac{2}{3} = 8,666666666666666
Baham ko'rish
Klipbordga nusxa olish
4+16+\frac{-3}{2!}\times 4+\frac{-4}{3!}\times 8
16 hosil qilish uchun 8 va 2 ni ko'paytirish.
20+\frac{-3}{2!}\times 4+\frac{-4}{3!}\times 8
20 olish uchun 4 va 16'ni qo'shing.
20+\frac{-3}{2}\times 4+\frac{-4}{3!}\times 8
2 ning faktoriali 2 ga teng.
20-\frac{3}{2}\times 4+\frac{-4}{3!}\times 8
\frac{-3}{2} kasri manfiy belgini olib tashlash bilan -\frac{3}{2} sifatida qayta yozilishi mumkin.
20+\frac{-3\times 4}{2}+\frac{-4}{3!}\times 8
-\frac{3}{2}\times 4 ni yagona kasrga aylantiring.
20+\frac{-12}{2}+\frac{-4}{3!}\times 8
-12 hosil qilish uchun -3 va 4 ni ko'paytirish.
20-6+\frac{-4}{3!}\times 8
-6 ni olish uchun -12 ni 2 ga bo‘ling.
14+\frac{-4}{3!}\times 8
14 olish uchun 20 dan 6 ni ayirish.
14+\frac{-4}{6}\times 8
3 ning faktoriali 6 ga teng.
14-\frac{2}{3}\times 8
\frac{-4}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
14+\frac{-2\times 8}{3}
-\frac{2}{3}\times 8 ni yagona kasrga aylantiring.
14+\frac{-16}{3}
-16 hosil qilish uchun -2 va 8 ni ko'paytirish.
14-\frac{16}{3}
\frac{-16}{3} kasri manfiy belgini olib tashlash bilan -\frac{16}{3} sifatida qayta yozilishi mumkin.
\frac{42}{3}-\frac{16}{3}
14 ni \frac{42}{3} kasrga o‘giring.
\frac{42-16}{3}
\frac{42}{3} va \frac{16}{3} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{26}{3}
26 olish uchun 42 dan 16 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}