z uchun yechish (complex solution)
z\in \mathrm{C}
z uchun yechish
z\in \mathrm{R}
Baham ko'rish
Klipbordga nusxa olish
18z-2\left(z-1\right)=2\left(8z+1\right)
Tenglamaning ikkala tarafini 6 ga, 6,3 ning eng kichik karralisiga ko‘paytiring.
18z-2z+2=2\left(8z+1\right)
-2 ga z-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16z+2=2\left(8z+1\right)
16z ni olish uchun 18z va -2z ni birlashtirish.
16z+2=16z+2
2 ga 8z+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16z+2-16z=2
Ikkala tarafdan 16z ni ayirish.
2=2
0 ni olish uchun 16z va -16z ni birlashtirish.
\text{true}
2 va 2 ni taqqoslang.
z\in \mathrm{C}
Bu har qanday z uchun to‘g‘ri.
18z-2\left(z-1\right)=2\left(8z+1\right)
Tenglamaning ikkala tarafini 6 ga, 6,3 ning eng kichik karralisiga ko‘paytiring.
18z-2z+2=2\left(8z+1\right)
-2 ga z-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16z+2=2\left(8z+1\right)
16z ni olish uchun 18z va -2z ni birlashtirish.
16z+2=16z+2
2 ga 8z+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16z+2-16z=2
Ikkala tarafdan 16z ni ayirish.
2=2
0 ni olish uchun 16z va -16z ni birlashtirish.
\text{true}
2 va 2 ni taqqoslang.
z\in \mathrm{R}
Bu har qanday z uchun to‘g‘ri.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}