x uchun yechish (complex solution)
x=\frac{-\sqrt{51}i+3}{10}\approx 0,3-0,714142843i
x=\frac{3+\sqrt{51}i}{10}\approx 0,3+0,714142843i
Grafik
Baham ko'rish
Klipbordga nusxa olish
-5x^{2}+3x=3
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-5x^{2}+3x-3=3-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
-5x^{2}+3x-3=0
O‘zidan 3 ayirilsa 0 qoladi.
x=\frac{-3±\sqrt{3^{2}-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, 3 ni b va -3 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\left(-5\right)\left(-3\right)}}{2\left(-5\right)}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9+20\left(-3\right)}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9-60}}{2\left(-5\right)}
20 ni -3 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{-51}}{2\left(-5\right)}
9 ni -60 ga qo'shish.
x=\frac{-3±\sqrt{51}i}{2\left(-5\right)}
-51 ning kvadrat ildizini chiqarish.
x=\frac{-3±\sqrt{51}i}{-10}
2 ni -5 marotabaga ko'paytirish.
x=\frac{-3+\sqrt{51}i}{-10}
x=\frac{-3±\sqrt{51}i}{-10} tenglamasini yeching, bunda ± musbat. -3 ni i\sqrt{51} ga qo'shish.
x=\frac{-\sqrt{51}i+3}{10}
-3+i\sqrt{51} ni -10 ga bo'lish.
x=\frac{-\sqrt{51}i-3}{-10}
x=\frac{-3±\sqrt{51}i}{-10} tenglamasini yeching, bunda ± manfiy. -3 dan i\sqrt{51} ni ayirish.
x=\frac{3+\sqrt{51}i}{10}
-3-i\sqrt{51} ni -10 ga bo'lish.
x=\frac{-\sqrt{51}i+3}{10} x=\frac{3+\sqrt{51}i}{10}
Tenglama yechildi.
-5x^{2}+3x=3
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-5x^{2}+3x}{-5}=\frac{3}{-5}
Ikki tarafini -5 ga bo‘ling.
x^{2}+\frac{3}{-5}x=\frac{3}{-5}
-5 ga bo'lish -5 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{3}{5}x=\frac{3}{-5}
3 ni -5 ga bo'lish.
x^{2}-\frac{3}{5}x=-\frac{3}{5}
3 ni -5 ga bo'lish.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=-\frac{3}{5}+\left(-\frac{3}{10}\right)^{2}
-\frac{3}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{10} olish uchun. Keyin, -\frac{3}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{3}{5}+\frac{9}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{10} kvadratini chiqarish.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{51}{100}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{5} ni \frac{9}{100} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{10}\right)^{2}=-\frac{51}{100}
x^{2}-\frac{3}{5}x+\frac{9}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{-\frac{51}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{10}=\frac{\sqrt{51}i}{10} x-\frac{3}{10}=-\frac{\sqrt{51}i}{10}
Qisqartirish.
x=\frac{3+\sqrt{51}i}{10} x=\frac{-\sqrt{51}i+3}{10}
\frac{3}{10} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}