x uchun yechish
x=\frac{1}{3}\approx 0,333333333
x=1
Grafik
Viktorina
Quadratic Equation
3x(x-1)=x-1
Baham ko'rish
Klipbordga nusxa olish
3x^{2}-3x=x-1
3x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-3x-x=-1
Ikkala tarafdan x ni ayirish.
3x^{2}-4x=-1
-4x ni olish uchun -3x va -x ni birlashtirish.
3x^{2}-4x+1=0
1 ni ikki tarafga qo’shing.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -4 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2\times 3}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{4}}{2\times 3}
16 ni -12 ga qo'shish.
x=\frac{-\left(-4\right)±2}{2\times 3}
4 ning kvadrat ildizini chiqarish.
x=\frac{4±2}{2\times 3}
-4 ning teskarisi 4 ga teng.
x=\frac{4±2}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{6}{6}
x=\frac{4±2}{6} tenglamasini yeching, bunda ± musbat. 4 ni 2 ga qo'shish.
x=1
6 ni 6 ga bo'lish.
x=\frac{2}{6}
x=\frac{4±2}{6} tenglamasini yeching, bunda ± manfiy. 4 dan 2 ni ayirish.
x=\frac{1}{3}
\frac{2}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=1 x=\frac{1}{3}
Tenglama yechildi.
3x^{2}-3x=x-1
3x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-3x-x=-1
Ikkala tarafdan x ni ayirish.
3x^{2}-4x=-1
-4x ni olish uchun -3x va -x ni birlashtirish.
\frac{3x^{2}-4x}{3}=-\frac{1}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}-\frac{4}{3}x=-\frac{1}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{2}{3}\right)^{2}
-\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2}{3} olish uchun. Keyin, -\frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{4}{3}x+\frac{4}{9}=-\frac{1}{3}+\frac{4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{3} kvadratini chiqarish.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{1}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{3} ni \frac{4}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{2}{3}\right)^{2}=\frac{1}{9}
x^{2}-\frac{4}{3}x+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{2}{3}=\frac{1}{3} x-\frac{2}{3}=-\frac{1}{3}
Qisqartirish.
x=1 x=\frac{1}{3}
\frac{2}{3} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}