Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

33x-6x^{2}=15
3x ga 11-2x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
33x-6x^{2}-15=0
Ikkala tarafdan 15 ni ayirish.
-6x^{2}+33x-15=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-33±\sqrt{33^{2}-4\left(-6\right)\left(-15\right)}}{2\left(-6\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -6 ni a, 33 ni b va -15 ni c bilan almashtiring.
x=\frac{-33±\sqrt{1089-4\left(-6\right)\left(-15\right)}}{2\left(-6\right)}
33 kvadratini chiqarish.
x=\frac{-33±\sqrt{1089+24\left(-15\right)}}{2\left(-6\right)}
-4 ni -6 marotabaga ko'paytirish.
x=\frac{-33±\sqrt{1089-360}}{2\left(-6\right)}
24 ni -15 marotabaga ko'paytirish.
x=\frac{-33±\sqrt{729}}{2\left(-6\right)}
1089 ni -360 ga qo'shish.
x=\frac{-33±27}{2\left(-6\right)}
729 ning kvadrat ildizini chiqarish.
x=\frac{-33±27}{-12}
2 ni -6 marotabaga ko'paytirish.
x=-\frac{6}{-12}
x=\frac{-33±27}{-12} tenglamasini yeching, bunda ± musbat. -33 ni 27 ga qo'shish.
x=\frac{1}{2}
\frac{-6}{-12} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{60}{-12}
x=\frac{-33±27}{-12} tenglamasini yeching, bunda ± manfiy. -33 dan 27 ni ayirish.
x=5
-60 ni -12 ga bo'lish.
x=\frac{1}{2} x=5
Tenglama yechildi.
33x-6x^{2}=15
3x ga 11-2x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-6x^{2}+33x=15
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-6x^{2}+33x}{-6}=\frac{15}{-6}
Ikki tarafini -6 ga bo‘ling.
x^{2}+\frac{33}{-6}x=\frac{15}{-6}
-6 ga bo'lish -6 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{11}{2}x=\frac{15}{-6}
\frac{33}{-6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{11}{2}x=-\frac{5}{2}
\frac{15}{-6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=-\frac{5}{2}+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{11}{4} olish uchun. Keyin, -\frac{11}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-\frac{5}{2}+\frac{121}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{4} kvadratini chiqarish.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{81}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{5}{2} ni \frac{121}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{11}{4}\right)^{2}=\frac{81}{16}
x^{2}-\frac{11}{2}x+\frac{121}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{11}{4}=\frac{9}{4} x-\frac{11}{4}=-\frac{9}{4}
Qisqartirish.
x=5 x=\frac{1}{2}
\frac{11}{4} ni tenglamaning ikkala tarafiga qo'shish.