3a { x }^{ 2 } +2bx+c = 4 { x }^{ 2 } -5x+ { 3 }^{ }
a uchun yechish (complex solution)
\left\{\begin{matrix}a=-\frac{-4x^{2}+2bx+5x+c-3}{3x^{2}}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&c=3\text{ and }x=0\end{matrix}\right,
b uchun yechish (complex solution)
\left\{\begin{matrix}b=-\frac{3ax}{2}+2x-\frac{c}{2x}-\frac{5}{2}+\frac{3}{2x}\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&c=3\text{ and }x=0\end{matrix}\right,
a uchun yechish
\left\{\begin{matrix}a=-\frac{-4x^{2}+2bx+5x+c-3}{3x^{2}}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&c=3\text{ and }x=0\end{matrix}\right,
b uchun yechish
\left\{\begin{matrix}b=-\frac{3ax}{2}+2x-\frac{c}{2x}-\frac{5}{2}+\frac{3}{2x}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&c=3\text{ and }x=0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
3ax^{2}+2bx+c=4x^{2}-5x+3
1 daraja ko‘rsatkichini 3 ga hisoblang va 3 ni qiymatni oling.
3ax^{2}+c=4x^{2}-5x+3-2bx
Ikkala tarafdan 2bx ni ayirish.
3ax^{2}=4x^{2}-5x+3-2bx-c
Ikkala tarafdan c ni ayirish.
3x^{2}a=4x^{2}-2bx-5x-c+3
Tenglama standart shaklda.
\frac{3x^{2}a}{3x^{2}}=\frac{4x^{2}-2bx-5x-c+3}{3x^{2}}
Ikki tarafini 3x^{2} ga bo‘ling.
a=\frac{4x^{2}-2bx-5x-c+3}{3x^{2}}
3x^{2} ga bo'lish 3x^{2} ga ko'paytirishni bekor qiladi.
3ax^{2}+2bx+c=4x^{2}-5x+3
1 daraja ko‘rsatkichini 3 ga hisoblang va 3 ni qiymatni oling.
2bx+c=4x^{2}-5x+3-3ax^{2}
Ikkala tarafdan 3ax^{2} ni ayirish.
2bx=4x^{2}-5x+3-3ax^{2}-c
Ikkala tarafdan c ni ayirish.
2xb=3-c-5x+4x^{2}-3ax^{2}
Tenglama standart shaklda.
\frac{2xb}{2x}=\frac{3-c-5x+4x^{2}-3ax^{2}}{2x}
Ikki tarafini 2x ga bo‘ling.
b=\frac{3-c-5x+4x^{2}-3ax^{2}}{2x}
2x ga bo'lish 2x ga ko'paytirishni bekor qiladi.
b=-\frac{3ax}{2}+2x+\frac{3-c}{2x}-\frac{5}{2}
4x^{2}-5x+3-3ax^{2}-c ni 2x ga bo'lish.
3ax^{2}+2bx+c=4x^{2}-5x+3
1 daraja ko‘rsatkichini 3 ga hisoblang va 3 ni qiymatni oling.
3ax^{2}+c=4x^{2}-5x+3-2bx
Ikkala tarafdan 2bx ni ayirish.
3ax^{2}=4x^{2}-5x+3-2bx-c
Ikkala tarafdan c ni ayirish.
3x^{2}a=4x^{2}-2bx-5x-c+3
Tenglama standart shaklda.
\frac{3x^{2}a}{3x^{2}}=\frac{4x^{2}-2bx-5x-c+3}{3x^{2}}
Ikki tarafini 3x^{2} ga bo‘ling.
a=\frac{4x^{2}-2bx-5x-c+3}{3x^{2}}
3x^{2} ga bo'lish 3x^{2} ga ko'paytirishni bekor qiladi.
3ax^{2}+2bx+c=4x^{2}-5x+3
1 daraja ko‘rsatkichini 3 ga hisoblang va 3 ni qiymatni oling.
2bx+c=4x^{2}-5x+3-3ax^{2}
Ikkala tarafdan 3ax^{2} ni ayirish.
2bx=4x^{2}-5x+3-3ax^{2}-c
Ikkala tarafdan c ni ayirish.
2xb=3-c-5x+4x^{2}-3ax^{2}
Tenglama standart shaklda.
\frac{2xb}{2x}=\frac{3-c-5x+4x^{2}-3ax^{2}}{2x}
Ikki tarafini 2x ga bo‘ling.
b=\frac{3-c-5x+4x^{2}-3ax^{2}}{2x}
2x ga bo'lish 2x ga ko'paytirishni bekor qiladi.
b=-\frac{3ax}{2}+2x+\frac{3-c}{2x}-\frac{5}{2}
4x^{2}-5x+3-3ax^{2}-c ni 2x ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}