Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

39x^{2}-14x-16=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 39\left(-16\right)}}{2\times 39}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 39\left(-16\right)}}{2\times 39}
-14 kvadratini chiqarish.
x=\frac{-\left(-14\right)±\sqrt{196-156\left(-16\right)}}{2\times 39}
-4 ni 39 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{196+2496}}{2\times 39}
-156 ni -16 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{2692}}{2\times 39}
196 ni 2496 ga qo'shish.
x=\frac{-\left(-14\right)±2\sqrt{673}}{2\times 39}
2692 ning kvadrat ildizini chiqarish.
x=\frac{14±2\sqrt{673}}{2\times 39}
-14 ning teskarisi 14 ga teng.
x=\frac{14±2\sqrt{673}}{78}
2 ni 39 marotabaga ko'paytirish.
x=\frac{2\sqrt{673}+14}{78}
x=\frac{14±2\sqrt{673}}{78} tenglamasini yeching, bunda ± musbat. 14 ni 2\sqrt{673} ga qo'shish.
x=\frac{\sqrt{673}+7}{39}
14+2\sqrt{673} ni 78 ga bo'lish.
x=\frac{14-2\sqrt{673}}{78}
x=\frac{14±2\sqrt{673}}{78} tenglamasini yeching, bunda ± manfiy. 14 dan 2\sqrt{673} ni ayirish.
x=\frac{7-\sqrt{673}}{39}
14-2\sqrt{673} ni 78 ga bo'lish.
39x^{2}-14x-16=39\left(x-\frac{\sqrt{673}+7}{39}\right)\left(x-\frac{7-\sqrt{673}}{39}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{7+\sqrt{673}}{39} ga va x_{2} uchun \frac{7-\sqrt{673}}{39} ga bo‘ling.