x uchun yechish
x = \frac{\sqrt{1541} - 5}{4} \approx 8,563893213
x=\frac{-\sqrt{1541}-5}{4}\approx -11,063893213
Grafik
Baham ko'rish
Klipbordga nusxa olish
385=4x^{2}+10x+6
2x+2 ga 2x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4x^{2}+10x+6=385
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
4x^{2}+10x+6-385=0
Ikkala tarafdan 385 ni ayirish.
4x^{2}+10x-379=0
-379 olish uchun 6 dan 385 ni ayirish.
x=\frac{-10±\sqrt{10^{2}-4\times 4\left(-379\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 10 ni b va -379 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4\times 4\left(-379\right)}}{2\times 4}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100-16\left(-379\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{100+6064}}{2\times 4}
-16 ni -379 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{6164}}{2\times 4}
100 ni 6064 ga qo'shish.
x=\frac{-10±2\sqrt{1541}}{2\times 4}
6164 ning kvadrat ildizini chiqarish.
x=\frac{-10±2\sqrt{1541}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{2\sqrt{1541}-10}{8}
x=\frac{-10±2\sqrt{1541}}{8} tenglamasini yeching, bunda ± musbat. -10 ni 2\sqrt{1541} ga qo'shish.
x=\frac{\sqrt{1541}-5}{4}
-10+2\sqrt{1541} ni 8 ga bo'lish.
x=\frac{-2\sqrt{1541}-10}{8}
x=\frac{-10±2\sqrt{1541}}{8} tenglamasini yeching, bunda ± manfiy. -10 dan 2\sqrt{1541} ni ayirish.
x=\frac{-\sqrt{1541}-5}{4}
-10-2\sqrt{1541} ni 8 ga bo'lish.
x=\frac{\sqrt{1541}-5}{4} x=\frac{-\sqrt{1541}-5}{4}
Tenglama yechildi.
385=4x^{2}+10x+6
2x+2 ga 2x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
4x^{2}+10x+6=385
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
4x^{2}+10x=385-6
Ikkala tarafdan 6 ni ayirish.
4x^{2}+10x=379
379 olish uchun 385 dan 6 ni ayirish.
\frac{4x^{2}+10x}{4}=\frac{379}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\frac{10}{4}x=\frac{379}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{2}x=\frac{379}{4}
\frac{10}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=\frac{379}{4}+\left(\frac{5}{4}\right)^{2}
\frac{5}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{4} olish uchun. Keyin, \frac{5}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{379}{4}+\frac{25}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{4} kvadratini chiqarish.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{1541}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{379}{4} ni \frac{25}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{5}{4}\right)^{2}=\frac{1541}{16}
x^{2}+\frac{5}{2}x+\frac{25}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{1541}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{4}=\frac{\sqrt{1541}}{4} x+\frac{5}{4}=-\frac{\sqrt{1541}}{4}
Qisqartirish.
x=\frac{\sqrt{1541}-5}{4} x=\frac{-\sqrt{1541}-5}{4}
Tenglamaning ikkala tarafidan \frac{5}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}