Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3782x^{2}+165735x+91000000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-165735±\sqrt{165735^{2}-4\times 3782\times 91000000}}{2\times 3782}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3782 ni a, 165735 ni b va 91000000 ni c bilan almashtiring.
x=\frac{-165735±\sqrt{27468090225-4\times 3782\times 91000000}}{2\times 3782}
165735 kvadratini chiqarish.
x=\frac{-165735±\sqrt{27468090225-15128\times 91000000}}{2\times 3782}
-4 ni 3782 marotabaga ko'paytirish.
x=\frac{-165735±\sqrt{27468090225-1376648000000}}{2\times 3782}
-15128 ni 91000000 marotabaga ko'paytirish.
x=\frac{-165735±\sqrt{-1349179909775}}{2\times 3782}
27468090225 ni -1376648000000 ga qo'shish.
x=\frac{-165735±5\sqrt{53967196391}i}{2\times 3782}
-1349179909775 ning kvadrat ildizini chiqarish.
x=\frac{-165735±5\sqrt{53967196391}i}{7564}
2 ni 3782 marotabaga ko'paytirish.
x=\frac{-165735+5\sqrt{53967196391}i}{7564}
x=\frac{-165735±5\sqrt{53967196391}i}{7564} tenglamasini yeching, bunda ± musbat. -165735 ni 5i\sqrt{53967196391} ga qo'shish.
x=\frac{-5\sqrt{53967196391}i-165735}{7564}
x=\frac{-165735±5\sqrt{53967196391}i}{7564} tenglamasini yeching, bunda ± manfiy. -165735 dan 5i\sqrt{53967196391} ni ayirish.
x=\frac{-165735+5\sqrt{53967196391}i}{7564} x=\frac{-5\sqrt{53967196391}i-165735}{7564}
Tenglama yechildi.
3782x^{2}+165735x+91000000=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3782x^{2}+165735x+91000000-91000000=-91000000
Tenglamaning ikkala tarafidan 91000000 ni ayirish.
3782x^{2}+165735x=-91000000
O‘zidan 91000000 ayirilsa 0 qoladi.
\frac{3782x^{2}+165735x}{3782}=-\frac{91000000}{3782}
Ikki tarafini 3782 ga bo‘ling.
x^{2}+\frac{165735}{3782}x=-\frac{91000000}{3782}
3782 ga bo'lish 3782 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{165735}{3782}x=-\frac{45500000}{1891}
\frac{-91000000}{3782} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{165735}{3782}x+\left(\frac{165735}{7564}\right)^{2}=-\frac{45500000}{1891}+\left(\frac{165735}{7564}\right)^{2}
\frac{165735}{3782} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{165735}{7564} olish uchun. Keyin, \frac{165735}{7564} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{165735}{3782}x+\frac{27468090225}{57214096}=-\frac{45500000}{1891}+\frac{27468090225}{57214096}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{165735}{7564} kvadratini chiqarish.
x^{2}+\frac{165735}{3782}x+\frac{27468090225}{57214096}=-\frac{1349179909775}{57214096}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{45500000}{1891} ni \frac{27468090225}{57214096} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{165735}{7564}\right)^{2}=-\frac{1349179909775}{57214096}
x^{2}+\frac{165735}{3782}x+\frac{27468090225}{57214096} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{165735}{7564}\right)^{2}}=\sqrt{-\frac{1349179909775}{57214096}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{165735}{7564}=\frac{5\sqrt{53967196391}i}{7564} x+\frac{165735}{7564}=-\frac{5\sqrt{53967196391}i}{7564}
Qisqartirish.
x=\frac{-165735+5\sqrt{53967196391}i}{7564} x=\frac{-5\sqrt{53967196391}i-165735}{7564}
Tenglamaning ikkala tarafidan \frac{165735}{7564} ni ayirish.