x uchun yechish
x = \frac{10 \sqrt{3} + 35}{37} \approx 1,414067786
x=\frac{35-10\sqrt{3}}{37}\approx 0,477824106
Grafik
Baham ko'rish
Klipbordga nusxa olish
37x^{2}-70x+25=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-70\right)±\sqrt{\left(-70\right)^{2}-4\times 37\times 25}}{2\times 37}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 37 ni a, -70 ni b va 25 ni c bilan almashtiring.
x=\frac{-\left(-70\right)±\sqrt{4900-4\times 37\times 25}}{2\times 37}
-70 kvadratini chiqarish.
x=\frac{-\left(-70\right)±\sqrt{4900-148\times 25}}{2\times 37}
-4 ni 37 marotabaga ko'paytirish.
x=\frac{-\left(-70\right)±\sqrt{4900-3700}}{2\times 37}
-148 ni 25 marotabaga ko'paytirish.
x=\frac{-\left(-70\right)±\sqrt{1200}}{2\times 37}
4900 ni -3700 ga qo'shish.
x=\frac{-\left(-70\right)±20\sqrt{3}}{2\times 37}
1200 ning kvadrat ildizini chiqarish.
x=\frac{70±20\sqrt{3}}{2\times 37}
-70 ning teskarisi 70 ga teng.
x=\frac{70±20\sqrt{3}}{74}
2 ni 37 marotabaga ko'paytirish.
x=\frac{20\sqrt{3}+70}{74}
x=\frac{70±20\sqrt{3}}{74} tenglamasini yeching, bunda ± musbat. 70 ni 20\sqrt{3} ga qo'shish.
x=\frac{10\sqrt{3}+35}{37}
70+20\sqrt{3} ni 74 ga bo'lish.
x=\frac{70-20\sqrt{3}}{74}
x=\frac{70±20\sqrt{3}}{74} tenglamasini yeching, bunda ± manfiy. 70 dan 20\sqrt{3} ni ayirish.
x=\frac{35-10\sqrt{3}}{37}
70-20\sqrt{3} ni 74 ga bo'lish.
x=\frac{10\sqrt{3}+35}{37} x=\frac{35-10\sqrt{3}}{37}
Tenglama yechildi.
37x^{2}-70x+25=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
37x^{2}-70x+25-25=-25
Tenglamaning ikkala tarafidan 25 ni ayirish.
37x^{2}-70x=-25
O‘zidan 25 ayirilsa 0 qoladi.
\frac{37x^{2}-70x}{37}=-\frac{25}{37}
Ikki tarafini 37 ga bo‘ling.
x^{2}-\frac{70}{37}x=-\frac{25}{37}
37 ga bo'lish 37 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{70}{37}x+\left(-\frac{35}{37}\right)^{2}=-\frac{25}{37}+\left(-\frac{35}{37}\right)^{2}
-\frac{70}{37} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{35}{37} olish uchun. Keyin, -\frac{35}{37} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{70}{37}x+\frac{1225}{1369}=-\frac{25}{37}+\frac{1225}{1369}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{35}{37} kvadratini chiqarish.
x^{2}-\frac{70}{37}x+\frac{1225}{1369}=\frac{300}{1369}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{25}{37} ni \frac{1225}{1369} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{35}{37}\right)^{2}=\frac{300}{1369}
x^{2}-\frac{70}{37}x+\frac{1225}{1369} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{35}{37}\right)^{2}}=\sqrt{\frac{300}{1369}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{35}{37}=\frac{10\sqrt{3}}{37} x-\frac{35}{37}=-\frac{10\sqrt{3}}{37}
Qisqartirish.
x=\frac{10\sqrt{3}+35}{37} x=\frac{35-10\sqrt{3}}{37}
\frac{35}{37} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}