x uchun yechish (complex solution)
x=\frac{7317+\sqrt{479361511}i}{730}\approx 10,023287671+29,992227397i
x=\frac{-\sqrt{479361511}i+7317}{730}\approx 10,023287671-29,992227397i
Grafik
Baham ko'rish
Klipbordga nusxa olish
365x^{2}-7317x+365000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7317\right)±\sqrt{\left(-7317\right)^{2}-4\times 365\times 365000}}{2\times 365}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 365 ni a, -7317 ni b va 365000 ni c bilan almashtiring.
x=\frac{-\left(-7317\right)±\sqrt{53538489-4\times 365\times 365000}}{2\times 365}
-7317 kvadratini chiqarish.
x=\frac{-\left(-7317\right)±\sqrt{53538489-1460\times 365000}}{2\times 365}
-4 ni 365 marotabaga ko'paytirish.
x=\frac{-\left(-7317\right)±\sqrt{53538489-532900000}}{2\times 365}
-1460 ni 365000 marotabaga ko'paytirish.
x=\frac{-\left(-7317\right)±\sqrt{-479361511}}{2\times 365}
53538489 ni -532900000 ga qo'shish.
x=\frac{-\left(-7317\right)±\sqrt{479361511}i}{2\times 365}
-479361511 ning kvadrat ildizini chiqarish.
x=\frac{7317±\sqrt{479361511}i}{2\times 365}
-7317 ning teskarisi 7317 ga teng.
x=\frac{7317±\sqrt{479361511}i}{730}
2 ni 365 marotabaga ko'paytirish.
x=\frac{7317+\sqrt{479361511}i}{730}
x=\frac{7317±\sqrt{479361511}i}{730} tenglamasini yeching, bunda ± musbat. 7317 ni i\sqrt{479361511} ga qo'shish.
x=\frac{-\sqrt{479361511}i+7317}{730}
x=\frac{7317±\sqrt{479361511}i}{730} tenglamasini yeching, bunda ± manfiy. 7317 dan i\sqrt{479361511} ni ayirish.
x=\frac{7317+\sqrt{479361511}i}{730} x=\frac{-\sqrt{479361511}i+7317}{730}
Tenglama yechildi.
365x^{2}-7317x+365000=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
365x^{2}-7317x+365000-365000=-365000
Tenglamaning ikkala tarafidan 365000 ni ayirish.
365x^{2}-7317x=-365000
O‘zidan 365000 ayirilsa 0 qoladi.
\frac{365x^{2}-7317x}{365}=-\frac{365000}{365}
Ikki tarafini 365 ga bo‘ling.
x^{2}-\frac{7317}{365}x=-\frac{365000}{365}
365 ga bo'lish 365 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{7317}{365}x=-1000
-365000 ni 365 ga bo'lish.
x^{2}-\frac{7317}{365}x+\left(-\frac{7317}{730}\right)^{2}=-1000+\left(-\frac{7317}{730}\right)^{2}
-\frac{7317}{365} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7317}{730} olish uchun. Keyin, -\frac{7317}{730} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{7317}{365}x+\frac{53538489}{532900}=-1000+\frac{53538489}{532900}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7317}{730} kvadratini chiqarish.
x^{2}-\frac{7317}{365}x+\frac{53538489}{532900}=-\frac{479361511}{532900}
-1000 ni \frac{53538489}{532900} ga qo'shish.
\left(x-\frac{7317}{730}\right)^{2}=-\frac{479361511}{532900}
x^{2}-\frac{7317}{365}x+\frac{53538489}{532900} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7317}{730}\right)^{2}}=\sqrt{-\frac{479361511}{532900}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7317}{730}=\frac{\sqrt{479361511}i}{730} x-\frac{7317}{730}=-\frac{\sqrt{479361511}i}{730}
Qisqartirish.
x=\frac{7317+\sqrt{479361511}i}{730} x=\frac{-\sqrt{479361511}i+7317}{730}
\frac{7317}{730} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}