Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

36=2x^{2}+14x+12
2x+12 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+14x+12=36
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2x^{2}+14x+12-36=0
Ikkala tarafdan 36 ni ayirish.
2x^{2}+14x-24=0
-24 olish uchun 12 dan 36 ni ayirish.
x=\frac{-14±\sqrt{14^{2}-4\times 2\left(-24\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 14 ni b va -24 ni c bilan almashtiring.
x=\frac{-14±\sqrt{196-4\times 2\left(-24\right)}}{2\times 2}
14 kvadratini chiqarish.
x=\frac{-14±\sqrt{196-8\left(-24\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{196+192}}{2\times 2}
-8 ni -24 marotabaga ko'paytirish.
x=\frac{-14±\sqrt{388}}{2\times 2}
196 ni 192 ga qo'shish.
x=\frac{-14±2\sqrt{97}}{2\times 2}
388 ning kvadrat ildizini chiqarish.
x=\frac{-14±2\sqrt{97}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{97}-14}{4}
x=\frac{-14±2\sqrt{97}}{4} tenglamasini yeching, bunda ± musbat. -14 ni 2\sqrt{97} ga qo'shish.
x=\frac{\sqrt{97}-7}{2}
-14+2\sqrt{97} ni 4 ga bo'lish.
x=\frac{-2\sqrt{97}-14}{4}
x=\frac{-14±2\sqrt{97}}{4} tenglamasini yeching, bunda ± manfiy. -14 dan 2\sqrt{97} ni ayirish.
x=\frac{-\sqrt{97}-7}{2}
-14-2\sqrt{97} ni 4 ga bo'lish.
x=\frac{\sqrt{97}-7}{2} x=\frac{-\sqrt{97}-7}{2}
Tenglama yechildi.
36=2x^{2}+14x+12
2x+12 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+14x+12=36
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2x^{2}+14x=36-12
Ikkala tarafdan 12 ni ayirish.
2x^{2}+14x=24
24 olish uchun 36 dan 12 ni ayirish.
\frac{2x^{2}+14x}{2}=\frac{24}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{14}{2}x=\frac{24}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+7x=\frac{24}{2}
14 ni 2 ga bo'lish.
x^{2}+7x=12
24 ni 2 ga bo'lish.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=12+\left(\frac{7}{2}\right)^{2}
7 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{2} olish uchun. Keyin, \frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+7x+\frac{49}{4}=12+\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{2} kvadratini chiqarish.
x^{2}+7x+\frac{49}{4}=\frac{97}{4}
12 ni \frac{49}{4} ga qo'shish.
\left(x+\frac{7}{2}\right)^{2}=\frac{97}{4}
x^{2}+7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{97}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{2}=\frac{\sqrt{97}}{2} x+\frac{7}{2}=-\frac{\sqrt{97}}{2}
Qisqartirish.
x=\frac{\sqrt{97}-7}{2} x=\frac{-\sqrt{97}-7}{2}
Tenglamaning ikkala tarafidan \frac{7}{2} ni ayirish.