Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

36x^{2}+8x-16=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-8±\sqrt{8^{2}-4\times 36\left(-16\right)}}{2\times 36}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{64-4\times 36\left(-16\right)}}{2\times 36}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64-144\left(-16\right)}}{2\times 36}
-4 ni 36 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{64+2304}}{2\times 36}
-144 ni -16 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{2368}}{2\times 36}
64 ni 2304 ga qo'shish.
x=\frac{-8±8\sqrt{37}}{2\times 36}
2368 ning kvadrat ildizini chiqarish.
x=\frac{-8±8\sqrt{37}}{72}
2 ni 36 marotabaga ko'paytirish.
x=\frac{8\sqrt{37}-8}{72}
x=\frac{-8±8\sqrt{37}}{72} tenglamasini yeching, bunda ± musbat. -8 ni 8\sqrt{37} ga qo'shish.
x=\frac{\sqrt{37}-1}{9}
-8+8\sqrt{37} ni 72 ga bo'lish.
x=\frac{-8\sqrt{37}-8}{72}
x=\frac{-8±8\sqrt{37}}{72} tenglamasini yeching, bunda ± manfiy. -8 dan 8\sqrt{37} ni ayirish.
x=\frac{-\sqrt{37}-1}{9}
-8-8\sqrt{37} ni 72 ga bo'lish.
36x^{2}+8x-16=36\left(x-\frac{\sqrt{37}-1}{9}\right)\left(x-\frac{-\sqrt{37}-1}{9}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-1+\sqrt{37}}{9} ga va x_{2} uchun \frac{-1-\sqrt{37}}{9} ga bo‘ling.