x uchun yechish
x=\frac{\sqrt{217}-1}{36}\approx 0,381414441
x=\frac{-\sqrt{217}-1}{36}\approx -0,436969996
Grafik
Baham ko'rish
Klipbordga nusxa olish
36x^{2}+2x-6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{2^{2}-4\times 36\left(-6\right)}}{2\times 36}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 36 ni a, 2 ni b va -6 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\times 36\left(-6\right)}}{2\times 36}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4-144\left(-6\right)}}{2\times 36}
-4 ni 36 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4+864}}{2\times 36}
-144 ni -6 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{868}}{2\times 36}
4 ni 864 ga qo'shish.
x=\frac{-2±2\sqrt{217}}{2\times 36}
868 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{217}}{72}
2 ni 36 marotabaga ko'paytirish.
x=\frac{2\sqrt{217}-2}{72}
x=\frac{-2±2\sqrt{217}}{72} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{217} ga qo'shish.
x=\frac{\sqrt{217}-1}{36}
-2+2\sqrt{217} ni 72 ga bo'lish.
x=\frac{-2\sqrt{217}-2}{72}
x=\frac{-2±2\sqrt{217}}{72} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{217} ni ayirish.
x=\frac{-\sqrt{217}-1}{36}
-2-2\sqrt{217} ni 72 ga bo'lish.
x=\frac{\sqrt{217}-1}{36} x=\frac{-\sqrt{217}-1}{36}
Tenglama yechildi.
36x^{2}+2x-6=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
36x^{2}+2x-6-\left(-6\right)=-\left(-6\right)
6 ni tenglamaning ikkala tarafiga qo'shish.
36x^{2}+2x=-\left(-6\right)
O‘zidan -6 ayirilsa 0 qoladi.
36x^{2}+2x=6
0 dan -6 ni ayirish.
\frac{36x^{2}+2x}{36}=\frac{6}{36}
Ikki tarafini 36 ga bo‘ling.
x^{2}+\frac{2}{36}x=\frac{6}{36}
36 ga bo'lish 36 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{18}x=\frac{6}{36}
\frac{2}{36} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{18}x=\frac{1}{6}
\frac{6}{36} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{18}x+\left(\frac{1}{36}\right)^{2}=\frac{1}{6}+\left(\frac{1}{36}\right)^{2}
\frac{1}{18} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{36} olish uchun. Keyin, \frac{1}{36} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{18}x+\frac{1}{1296}=\frac{1}{6}+\frac{1}{1296}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{36} kvadratini chiqarish.
x^{2}+\frac{1}{18}x+\frac{1}{1296}=\frac{217}{1296}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{6} ni \frac{1}{1296} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{36}\right)^{2}=\frac{217}{1296}
x^{2}+\frac{1}{18}x+\frac{1}{1296} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{36}\right)^{2}}=\sqrt{\frac{217}{1296}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{36}=\frac{\sqrt{217}}{36} x+\frac{1}{36}=-\frac{\sqrt{217}}{36}
Qisqartirish.
x=\frac{\sqrt{217}-1}{36} x=\frac{-\sqrt{217}-1}{36}
Tenglamaning ikkala tarafidan \frac{1}{36} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}