a uchun yechish
a\in \begin{bmatrix}-\frac{2\sqrt{5}}{5},\frac{2\sqrt{5}}{5}\end{bmatrix}
Baham ko'rish
Klipbordga nusxa olish
36-20\left(a^{2}+1\right)\geq 0
20 hosil qilish uchun 4 va 5 ni ko'paytirish.
36-20a^{2}-20\geq 0
-20 ga a^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
16-20a^{2}\geq 0
16 olish uchun 36 dan 20 ni ayirish.
-16+20a^{2}\leq 0
16-20a^{2} musbatida eng katta quvvatni koeffitsientini aniqlash uchun tengsizlikni -1 ga koʻpaytiring. -1 manfiy boʻlgani uchun tengsizlikning yo‘nalishi o‘zgaradi.
a^{2}\leq \frac{4}{5}
\frac{4}{5} ni ikki tarafga qo’shing.
a^{2}\leq \left(\frac{2\sqrt{5}}{5}\right)^{2}
\frac{4}{5} ning kvadrat ildizini hisoblab, \frac{2\sqrt{5}}{5} natijaga ega bo‘ling. \frac{4}{5} ni \left(\frac{2\sqrt{5}}{5}\right)^{2} sifatida qaytadan yozish.
|a|\leq \frac{2\sqrt{5}}{5}
Tengsizlikda |a|\leq \frac{2\sqrt{5}}{5} bor.
a\in \begin{bmatrix}-\frac{2\sqrt{5}}{5},\frac{2\sqrt{5}}{5}\end{bmatrix}
|a|\leq \frac{2\sqrt{5}}{5} ni a\in \left[-\frac{2\sqrt{5}}{5},\frac{2\sqrt{5}}{5}\right] sifatida qaytadan yozish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}