Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

36y^{2}=-40
Ikkala tarafdan 40 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
y^{2}=\frac{-40}{36}
Ikki tarafini 36 ga bo‘ling.
y^{2}=-\frac{10}{9}
\frac{-40}{36} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
y=\frac{\sqrt{10}i}{3} y=-\frac{\sqrt{10}i}{3}
Tenglama yechildi.
36y^{2}+40=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 36\times 40}}{2\times 36}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 36 ni a, 0 ni b va 40 ni c bilan almashtiring.
y=\frac{0±\sqrt{-4\times 36\times 40}}{2\times 36}
0 kvadratini chiqarish.
y=\frac{0±\sqrt{-144\times 40}}{2\times 36}
-4 ni 36 marotabaga ko'paytirish.
y=\frac{0±\sqrt{-5760}}{2\times 36}
-144 ni 40 marotabaga ko'paytirish.
y=\frac{0±24\sqrt{10}i}{2\times 36}
-5760 ning kvadrat ildizini chiqarish.
y=\frac{0±24\sqrt{10}i}{72}
2 ni 36 marotabaga ko'paytirish.
y=\frac{\sqrt{10}i}{3}
y=\frac{0±24\sqrt{10}i}{72} tenglamasini yeching, bunda ± musbat.
y=-\frac{\sqrt{10}i}{3}
y=\frac{0±24\sqrt{10}i}{72} tenglamasini yeching, bunda ± manfiy.
y=\frac{\sqrt{10}i}{3} y=-\frac{\sqrt{10}i}{3}
Tenglama yechildi.