x uchun yechish (complex solution)
x=-\frac{3\sqrt{105}i}{35}\approx -0-0,878310066i
x=\frac{3\sqrt{105}i}{35}\approx 0,878310066i
Grafik
Viktorina
Polynomial
35 x ^ { 2 } = - 27
Baham ko'rish
Klipbordga nusxa olish
x^{2}=-\frac{27}{35}
Ikki tarafini 35 ga bo‘ling.
x=\frac{3\sqrt{105}i}{35} x=-\frac{3\sqrt{105}i}{35}
Tenglama yechildi.
x^{2}=-\frac{27}{35}
Ikki tarafini 35 ga bo‘ling.
x^{2}+\frac{27}{35}=0
\frac{27}{35} ni ikki tarafga qo’shing.
x=\frac{0±\sqrt{0^{2}-4\times \frac{27}{35}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va \frac{27}{35} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times \frac{27}{35}}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-\frac{108}{35}}}{2}
-4 ni \frac{27}{35} marotabaga ko'paytirish.
x=\frac{0±\frac{6\sqrt{105}i}{35}}{2}
-\frac{108}{35} ning kvadrat ildizini chiqarish.
x=\frac{3\sqrt{105}i}{35}
x=\frac{0±\frac{6\sqrt{105}i}{35}}{2} tenglamasini yeching, bunda ± musbat.
x=-\frac{3\sqrt{105}i}{35}
x=\frac{0±\frac{6\sqrt{105}i}{35}}{2} tenglamasini yeching, bunda ± manfiy.
x=\frac{3\sqrt{105}i}{35} x=-\frac{3\sqrt{105}i}{35}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}