r uchun yechish
r=\frac{6}{7}\approx 0,857142857
r = \frac{6}{5} = 1\frac{1}{5} = 1,2
Baham ko'rish
Klipbordga nusxa olish
35r^{2}-72r+36=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
r=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 35\times 36}}{2\times 35}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 35 ni a, -72 ni b va 36 ni c bilan almashtiring.
r=\frac{-\left(-72\right)±\sqrt{5184-4\times 35\times 36}}{2\times 35}
-72 kvadratini chiqarish.
r=\frac{-\left(-72\right)±\sqrt{5184-140\times 36}}{2\times 35}
-4 ni 35 marotabaga ko'paytirish.
r=\frac{-\left(-72\right)±\sqrt{5184-5040}}{2\times 35}
-140 ni 36 marotabaga ko'paytirish.
r=\frac{-\left(-72\right)±\sqrt{144}}{2\times 35}
5184 ni -5040 ga qo'shish.
r=\frac{-\left(-72\right)±12}{2\times 35}
144 ning kvadrat ildizini chiqarish.
r=\frac{72±12}{2\times 35}
-72 ning teskarisi 72 ga teng.
r=\frac{72±12}{70}
2 ni 35 marotabaga ko'paytirish.
r=\frac{84}{70}
r=\frac{72±12}{70} tenglamasini yeching, bunda ± musbat. 72 ni 12 ga qo'shish.
r=\frac{6}{5}
\frac{84}{70} ulushini 14 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
r=\frac{60}{70}
r=\frac{72±12}{70} tenglamasini yeching, bunda ± manfiy. 72 dan 12 ni ayirish.
r=\frac{6}{7}
\frac{60}{70} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
r=\frac{6}{5} r=\frac{6}{7}
Tenglama yechildi.
35r^{2}-72r+36=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
35r^{2}-72r+36-36=-36
Tenglamaning ikkala tarafidan 36 ni ayirish.
35r^{2}-72r=-36
O‘zidan 36 ayirilsa 0 qoladi.
\frac{35r^{2}-72r}{35}=-\frac{36}{35}
Ikki tarafini 35 ga bo‘ling.
r^{2}-\frac{72}{35}r=-\frac{36}{35}
35 ga bo'lish 35 ga ko'paytirishni bekor qiladi.
r^{2}-\frac{72}{35}r+\left(-\frac{36}{35}\right)^{2}=-\frac{36}{35}+\left(-\frac{36}{35}\right)^{2}
-\frac{72}{35} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{36}{35} olish uchun. Keyin, -\frac{36}{35} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
r^{2}-\frac{72}{35}r+\frac{1296}{1225}=-\frac{36}{35}+\frac{1296}{1225}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{36}{35} kvadratini chiqarish.
r^{2}-\frac{72}{35}r+\frac{1296}{1225}=\frac{36}{1225}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{36}{35} ni \frac{1296}{1225} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(r-\frac{36}{35}\right)^{2}=\frac{36}{1225}
r^{2}-\frac{72}{35}r+\frac{1296}{1225} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(r-\frac{36}{35}\right)^{2}}=\sqrt{\frac{36}{1225}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
r-\frac{36}{35}=\frac{6}{35} r-\frac{36}{35}=-\frac{6}{35}
Qisqartirish.
r=\frac{6}{5} r=\frac{6}{7}
\frac{36}{35} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}