y uchun yechish
y=4
y=30
Grafik
Baham ko'rish
Klipbordga nusxa olish
y\times 34-yy=120
y qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini y ga ko'paytirish.
y\times 34-y^{2}=120
y^{2} hosil qilish uchun y va y ni ko'paytirish.
y\times 34-y^{2}-120=0
Ikkala tarafdan 120 ni ayirish.
-y^{2}+34y-120=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-34±\sqrt{34^{2}-4\left(-1\right)\left(-120\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 34 ni b va -120 ni c bilan almashtiring.
y=\frac{-34±\sqrt{1156-4\left(-1\right)\left(-120\right)}}{2\left(-1\right)}
34 kvadratini chiqarish.
y=\frac{-34±\sqrt{1156+4\left(-120\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
y=\frac{-34±\sqrt{1156-480}}{2\left(-1\right)}
4 ni -120 marotabaga ko'paytirish.
y=\frac{-34±\sqrt{676}}{2\left(-1\right)}
1156 ni -480 ga qo'shish.
y=\frac{-34±26}{2\left(-1\right)}
676 ning kvadrat ildizini chiqarish.
y=\frac{-34±26}{-2}
2 ni -1 marotabaga ko'paytirish.
y=-\frac{8}{-2}
y=\frac{-34±26}{-2} tenglamasini yeching, bunda ± musbat. -34 ni 26 ga qo'shish.
y=4
-8 ni -2 ga bo'lish.
y=-\frac{60}{-2}
y=\frac{-34±26}{-2} tenglamasini yeching, bunda ± manfiy. -34 dan 26 ni ayirish.
y=30
-60 ni -2 ga bo'lish.
y=4 y=30
Tenglama yechildi.
y\times 34-yy=120
y qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini y ga ko'paytirish.
y\times 34-y^{2}=120
y^{2} hosil qilish uchun y va y ni ko'paytirish.
-y^{2}+34y=120
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-y^{2}+34y}{-1}=\frac{120}{-1}
Ikki tarafini -1 ga bo‘ling.
y^{2}+\frac{34}{-1}y=\frac{120}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
y^{2}-34y=\frac{120}{-1}
34 ni -1 ga bo'lish.
y^{2}-34y=-120
120 ni -1 ga bo'lish.
y^{2}-34y+\left(-17\right)^{2}=-120+\left(-17\right)^{2}
-34 ni bo‘lish, x shartining koeffitsienti, 2 ga -17 olish uchun. Keyin, -17 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-34y+289=-120+289
-17 kvadratini chiqarish.
y^{2}-34y+289=169
-120 ni 289 ga qo'shish.
\left(y-17\right)^{2}=169
y^{2}-34y+289 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-17\right)^{2}}=\sqrt{169}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-17=13 y-17=-13
Qisqartirish.
y=30 y=4
17 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}