x uchun yechish (complex solution)
x=-\frac{\sqrt{33}i}{11}\approx -0-0,522232968i
x=\frac{\sqrt{33}i}{11}\approx 0,522232968i
Grafik
Baham ko'rish
Klipbordga nusxa olish
-22x^{2}-1\times 5=1
-22x^{2} ni olish uchun 33x^{2} va -55x^{2} ni birlashtirish.
-22x^{2}-5=1
5 hosil qilish uchun 1 va 5 ni ko'paytirish.
-22x^{2}=1+5
5 ni ikki tarafga qo’shing.
-22x^{2}=6
6 olish uchun 1 va 5'ni qo'shing.
x^{2}=\frac{6}{-22}
Ikki tarafini -22 ga bo‘ling.
x^{2}=-\frac{3}{11}
\frac{6}{-22} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{\sqrt{33}i}{11} x=-\frac{\sqrt{33}i}{11}
Tenglama yechildi.
-22x^{2}-1\times 5=1
-22x^{2} ni olish uchun 33x^{2} va -55x^{2} ni birlashtirish.
-22x^{2}-5=1
5 hosil qilish uchun 1 va 5 ni ko'paytirish.
-22x^{2}-5-1=0
Ikkala tarafdan 1 ni ayirish.
-22x^{2}-6=0
-6 olish uchun -5 dan 1 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-22\right)\left(-6\right)}}{2\left(-22\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -22 ni a, 0 ni b va -6 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-22\right)\left(-6\right)}}{2\left(-22\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{88\left(-6\right)}}{2\left(-22\right)}
-4 ni -22 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-528}}{2\left(-22\right)}
88 ni -6 marotabaga ko'paytirish.
x=\frac{0±4\sqrt{33}i}{2\left(-22\right)}
-528 ning kvadrat ildizini chiqarish.
x=\frac{0±4\sqrt{33}i}{-44}
2 ni -22 marotabaga ko'paytirish.
x=-\frac{\sqrt{33}i}{11}
x=\frac{0±4\sqrt{33}i}{-44} tenglamasini yeching, bunda ± musbat.
x=\frac{\sqrt{33}i}{11}
x=\frac{0±4\sqrt{33}i}{-44} tenglamasini yeching, bunda ± manfiy.
x=-\frac{\sqrt{33}i}{11} x=\frac{\sqrt{33}i}{11}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}