Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

32x^{2}=7
7 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}=\frac{7}{32}
Ikki tarafini 32 ga bo‘ling.
x=\frac{\sqrt{14}}{8} x=-\frac{\sqrt{14}}{8}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
32x^{2}-7=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 32\left(-7\right)}}{2\times 32}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 32 ni a, 0 ni b va -7 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 32\left(-7\right)}}{2\times 32}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-128\left(-7\right)}}{2\times 32}
-4 ni 32 marotabaga ko'paytirish.
x=\frac{0±\sqrt{896}}{2\times 32}
-128 ni -7 marotabaga ko'paytirish.
x=\frac{0±8\sqrt{14}}{2\times 32}
896 ning kvadrat ildizini chiqarish.
x=\frac{0±8\sqrt{14}}{64}
2 ni 32 marotabaga ko'paytirish.
x=\frac{\sqrt{14}}{8}
x=\frac{0±8\sqrt{14}}{64} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{14}}{8}
x=\frac{0±8\sqrt{14}}{64} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{14}}{8} x=-\frac{\sqrt{14}}{8}
Tenglama yechildi.