Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

32x^{2}-80x+48=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 32\times 48}}{2\times 32}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 32 ni a, -80 ni b va 48 ni c bilan almashtiring.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 32\times 48}}{2\times 32}
-80 kvadratini chiqarish.
x=\frac{-\left(-80\right)±\sqrt{6400-128\times 48}}{2\times 32}
-4 ni 32 marotabaga ko'paytirish.
x=\frac{-\left(-80\right)±\sqrt{6400-6144}}{2\times 32}
-128 ni 48 marotabaga ko'paytirish.
x=\frac{-\left(-80\right)±\sqrt{256}}{2\times 32}
6400 ni -6144 ga qo'shish.
x=\frac{-\left(-80\right)±16}{2\times 32}
256 ning kvadrat ildizini chiqarish.
x=\frac{80±16}{2\times 32}
-80 ning teskarisi 80 ga teng.
x=\frac{80±16}{64}
2 ni 32 marotabaga ko'paytirish.
x=\frac{96}{64}
x=\frac{80±16}{64} tenglamasini yeching, bunda ± musbat. 80 ni 16 ga qo'shish.
x=\frac{3}{2}
\frac{96}{64} ulushini 32 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{64}{64}
x=\frac{80±16}{64} tenglamasini yeching, bunda ± manfiy. 80 dan 16 ni ayirish.
x=1
64 ni 64 ga bo'lish.
x=\frac{3}{2} x=1
Tenglama yechildi.
32x^{2}-80x+48=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
32x^{2}-80x+48-48=-48
Tenglamaning ikkala tarafidan 48 ni ayirish.
32x^{2}-80x=-48
O‘zidan 48 ayirilsa 0 qoladi.
\frac{32x^{2}-80x}{32}=-\frac{48}{32}
Ikki tarafini 32 ga bo‘ling.
x^{2}+\left(-\frac{80}{32}\right)x=-\frac{48}{32}
32 ga bo'lish 32 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{5}{2}x=-\frac{48}{32}
\frac{-80}{32} ulushini 16 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{5}{2}x=-\frac{3}{2}
\frac{-48}{32} ulushini 16 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{4} olish uchun. Keyin, -\frac{5}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{3}{2}+\frac{25}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{4} kvadratini chiqarish.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{1}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{3}{2} ni \frac{25}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{5}{4}\right)^{2}=\frac{1}{16}
x^{2}-\frac{5}{2}x+\frac{25}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{4}=\frac{1}{4} x-\frac{5}{4}=-\frac{1}{4}
Qisqartirish.
x=\frac{3}{2} x=1
\frac{5}{4} ni tenglamaning ikkala tarafiga qo'shish.