x uchun yechish
x = \frac{5 \sqrt{3089} - 125}{32} \approx 4,77793327
x=\frac{-5\sqrt{3089}-125}{32}\approx -12,59043327
Grafik
Baham ko'rish
Klipbordga nusxa olish
32x^{2}+250x-1925=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-250±\sqrt{250^{2}-4\times 32\left(-1925\right)}}{2\times 32}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 32 ni a, 250 ni b va -1925 ni c bilan almashtiring.
x=\frac{-250±\sqrt{62500-4\times 32\left(-1925\right)}}{2\times 32}
250 kvadratini chiqarish.
x=\frac{-250±\sqrt{62500-128\left(-1925\right)}}{2\times 32}
-4 ni 32 marotabaga ko'paytirish.
x=\frac{-250±\sqrt{62500+246400}}{2\times 32}
-128 ni -1925 marotabaga ko'paytirish.
x=\frac{-250±\sqrt{308900}}{2\times 32}
62500 ni 246400 ga qo'shish.
x=\frac{-250±10\sqrt{3089}}{2\times 32}
308900 ning kvadrat ildizini chiqarish.
x=\frac{-250±10\sqrt{3089}}{64}
2 ni 32 marotabaga ko'paytirish.
x=\frac{10\sqrt{3089}-250}{64}
x=\frac{-250±10\sqrt{3089}}{64} tenglamasini yeching, bunda ± musbat. -250 ni 10\sqrt{3089} ga qo'shish.
x=\frac{5\sqrt{3089}-125}{32}
-250+10\sqrt{3089} ni 64 ga bo'lish.
x=\frac{-10\sqrt{3089}-250}{64}
x=\frac{-250±10\sqrt{3089}}{64} tenglamasini yeching, bunda ± manfiy. -250 dan 10\sqrt{3089} ni ayirish.
x=\frac{-5\sqrt{3089}-125}{32}
-250-10\sqrt{3089} ni 64 ga bo'lish.
x=\frac{5\sqrt{3089}-125}{32} x=\frac{-5\sqrt{3089}-125}{32}
Tenglama yechildi.
32x^{2}+250x-1925=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
32x^{2}+250x-1925-\left(-1925\right)=-\left(-1925\right)
1925 ni tenglamaning ikkala tarafiga qo'shish.
32x^{2}+250x=-\left(-1925\right)
O‘zidan -1925 ayirilsa 0 qoladi.
32x^{2}+250x=1925
0 dan -1925 ni ayirish.
\frac{32x^{2}+250x}{32}=\frac{1925}{32}
Ikki tarafini 32 ga bo‘ling.
x^{2}+\frac{250}{32}x=\frac{1925}{32}
32 ga bo'lish 32 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{125}{16}x=\frac{1925}{32}
\frac{250}{32} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{125}{16}x+\left(\frac{125}{32}\right)^{2}=\frac{1925}{32}+\left(\frac{125}{32}\right)^{2}
\frac{125}{16} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{125}{32} olish uchun. Keyin, \frac{125}{32} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{125}{16}x+\frac{15625}{1024}=\frac{1925}{32}+\frac{15625}{1024}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{125}{32} kvadratini chiqarish.
x^{2}+\frac{125}{16}x+\frac{15625}{1024}=\frac{77225}{1024}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1925}{32} ni \frac{15625}{1024} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{125}{32}\right)^{2}=\frac{77225}{1024}
x^{2}+\frac{125}{16}x+\frac{15625}{1024} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{125}{32}\right)^{2}}=\sqrt{\frac{77225}{1024}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{125}{32}=\frac{5\sqrt{3089}}{32} x+\frac{125}{32}=-\frac{5\sqrt{3089}}{32}
Qisqartirish.
x=\frac{5\sqrt{3089}-125}{32} x=\frac{-5\sqrt{3089}-125}{32}
Tenglamaning ikkala tarafidan \frac{125}{32} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}