Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

32z^{2}+3z-40=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
z=\frac{-3±\sqrt{3^{2}-4\times 32\left(-40\right)}}{2\times 32}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
z=\frac{-3±\sqrt{9-4\times 32\left(-40\right)}}{2\times 32}
3 kvadratini chiqarish.
z=\frac{-3±\sqrt{9-128\left(-40\right)}}{2\times 32}
-4 ni 32 marotabaga ko'paytirish.
z=\frac{-3±\sqrt{9+5120}}{2\times 32}
-128 ni -40 marotabaga ko'paytirish.
z=\frac{-3±\sqrt{5129}}{2\times 32}
9 ni 5120 ga qo'shish.
z=\frac{-3±\sqrt{5129}}{64}
2 ni 32 marotabaga ko'paytirish.
z=\frac{\sqrt{5129}-3}{64}
z=\frac{-3±\sqrt{5129}}{64} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{5129} ga qo'shish.
z=\frac{-\sqrt{5129}-3}{64}
z=\frac{-3±\sqrt{5129}}{64} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{5129} ni ayirish.
32z^{2}+3z-40=32\left(z-\frac{\sqrt{5129}-3}{64}\right)\left(z-\frac{-\sqrt{5129}-3}{64}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-3+\sqrt{5129}}{64} ga va x_{2} uchun \frac{-3-\sqrt{5129}}{64} ga bo‘ling.