Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}=\frac{81}{314}
Ikki tarafini 314 ga bo‘ling.
x=\frac{9\sqrt{314}}{314} x=-\frac{9\sqrt{314}}{314}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}=\frac{81}{314}
Ikki tarafini 314 ga bo‘ling.
x^{2}-\frac{81}{314}=0
Ikkala tarafdan \frac{81}{314} ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{81}{314}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{81}{314} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-\frac{81}{314}\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{\frac{162}{157}}}{2}
-4 ni -\frac{81}{314} marotabaga ko'paytirish.
x=\frac{0±\frac{9\sqrt{314}}{157}}{2}
\frac{162}{157} ning kvadrat ildizini chiqarish.
x=\frac{9\sqrt{314}}{314}
x=\frac{0±\frac{9\sqrt{314}}{157}}{2} tenglamasini yeching, bunda ± musbat.
x=-\frac{9\sqrt{314}}{314}
x=\frac{0±\frac{9\sqrt{314}}{157}}{2} tenglamasini yeching, bunda ± manfiy.
x=\frac{9\sqrt{314}}{314} x=-\frac{9\sqrt{314}}{314}
Tenglama yechildi.