Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

31x^{2}-3x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 31}}{2\times 31}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 31 ni a, -3 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 31}}{2\times 31}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9-124}}{2\times 31}
-4 ni 31 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{-115}}{2\times 31}
9 ni -124 ga qo'shish.
x=\frac{-\left(-3\right)±\sqrt{115}i}{2\times 31}
-115 ning kvadrat ildizini chiqarish.
x=\frac{3±\sqrt{115}i}{2\times 31}
-3 ning teskarisi 3 ga teng.
x=\frac{3±\sqrt{115}i}{62}
2 ni 31 marotabaga ko'paytirish.
x=\frac{3+\sqrt{115}i}{62}
x=\frac{3±\sqrt{115}i}{62} tenglamasini yeching, bunda ± musbat. 3 ni i\sqrt{115} ga qo'shish.
x=\frac{-\sqrt{115}i+3}{62}
x=\frac{3±\sqrt{115}i}{62} tenglamasini yeching, bunda ± manfiy. 3 dan i\sqrt{115} ni ayirish.
x=\frac{3+\sqrt{115}i}{62} x=\frac{-\sqrt{115}i+3}{62}
Tenglama yechildi.
31x^{2}-3x+1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
31x^{2}-3x+1-1=-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
31x^{2}-3x=-1
O‘zidan 1 ayirilsa 0 qoladi.
\frac{31x^{2}-3x}{31}=-\frac{1}{31}
Ikki tarafini 31 ga bo‘ling.
x^{2}-\frac{3}{31}x=-\frac{1}{31}
31 ga bo'lish 31 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{3}{31}x+\left(-\frac{3}{62}\right)^{2}=-\frac{1}{31}+\left(-\frac{3}{62}\right)^{2}
-\frac{3}{31} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{62} olish uchun. Keyin, -\frac{3}{62} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{3}{31}x+\frac{9}{3844}=-\frac{1}{31}+\frac{9}{3844}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{62} kvadratini chiqarish.
x^{2}-\frac{3}{31}x+\frac{9}{3844}=-\frac{115}{3844}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{31} ni \frac{9}{3844} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{62}\right)^{2}=-\frac{115}{3844}
x^{2}-\frac{3}{31}x+\frac{9}{3844} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{62}\right)^{2}}=\sqrt{-\frac{115}{3844}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{62}=\frac{\sqrt{115}i}{62} x-\frac{3}{62}=-\frac{\sqrt{115}i}{62}
Qisqartirish.
x=\frac{3+\sqrt{115}i}{62} x=\frac{-\sqrt{115}i+3}{62}
\frac{3}{62} ni tenglamaning ikkala tarafiga qo'shish.