p uchun yechish
p = \frac{37}{31} = 1\frac{6}{31} \approx 1,193548387
p=0
Baham ko'rish
Klipbordga nusxa olish
p\left(31p-37\right)=0
p omili.
p=0 p=\frac{37}{31}
Tenglamani yechish uchun p=0 va 31p-37=0 ni yeching.
31p^{2}-37p=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
p=\frac{-\left(-37\right)±\sqrt{\left(-37\right)^{2}}}{2\times 31}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 31 ni a, -37 ni b va 0 ni c bilan almashtiring.
p=\frac{-\left(-37\right)±37}{2\times 31}
\left(-37\right)^{2} ning kvadrat ildizini chiqarish.
p=\frac{37±37}{2\times 31}
-37 ning teskarisi 37 ga teng.
p=\frac{37±37}{62}
2 ni 31 marotabaga ko'paytirish.
p=\frac{74}{62}
p=\frac{37±37}{62} tenglamasini yeching, bunda ± musbat. 37 ni 37 ga qo'shish.
p=\frac{37}{31}
\frac{74}{62} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
p=\frac{0}{62}
p=\frac{37±37}{62} tenglamasini yeching, bunda ± manfiy. 37 dan 37 ni ayirish.
p=0
0 ni 62 ga bo'lish.
p=\frac{37}{31} p=0
Tenglama yechildi.
31p^{2}-37p=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{31p^{2}-37p}{31}=\frac{0}{31}
Ikki tarafini 31 ga bo‘ling.
p^{2}-\frac{37}{31}p=\frac{0}{31}
31 ga bo'lish 31 ga ko'paytirishni bekor qiladi.
p^{2}-\frac{37}{31}p=0
0 ni 31 ga bo'lish.
p^{2}-\frac{37}{31}p+\left(-\frac{37}{62}\right)^{2}=\left(-\frac{37}{62}\right)^{2}
-\frac{37}{31} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{37}{62} olish uchun. Keyin, -\frac{37}{62} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
p^{2}-\frac{37}{31}p+\frac{1369}{3844}=\frac{1369}{3844}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{37}{62} kvadratini chiqarish.
\left(p-\frac{37}{62}\right)^{2}=\frac{1369}{3844}
p^{2}-\frac{37}{31}p+\frac{1369}{3844} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(p-\frac{37}{62}\right)^{2}}=\sqrt{\frac{1369}{3844}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
p-\frac{37}{62}=\frac{37}{62} p-\frac{37}{62}=-\frac{37}{62}
Qisqartirish.
p=\frac{37}{31} p=0
\frac{37}{62} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}