x uchun yechish
x=\frac{1}{9}\approx 0,111111111
x=\frac{1}{25}=0,04
Grafik
Viktorina
Algebra
30x-16 \sqrt{ x } +2=0
Baham ko'rish
Klipbordga nusxa olish
30x-16\sqrt{x}=-2
Ikkala tarafdan 2 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-16\sqrt{x}=-2-30x
Tenglamaning ikkala tarafidan 30x ni ayirish.
\left(-16\sqrt{x}\right)^{2}=\left(-2-30x\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\left(-16\right)^{2}\left(\sqrt{x}\right)^{2}=\left(-2-30x\right)^{2}
\left(-16\sqrt{x}\right)^{2} ni kengaytirish.
256\left(\sqrt{x}\right)^{2}=\left(-2-30x\right)^{2}
2 daraja ko‘rsatkichini -16 ga hisoblang va 256 ni qiymatni oling.
256x=\left(-2-30x\right)^{2}
2 daraja ko‘rsatkichini \sqrt{x} ga hisoblang va x ni qiymatni oling.
256x=4+120x+900x^{2}
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(-2-30x\right)^{2} kengaytirilishi uchun ishlating.
256x-120x=4+900x^{2}
Ikkala tarafdan 120x ni ayirish.
136x=4+900x^{2}
136x ni olish uchun 256x va -120x ni birlashtirish.
136x-900x^{2}=4
Ikkala tarafdan 900x^{2} ni ayirish.
-900x^{2}+136x=4
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-900x^{2}+136x-4=4-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
-900x^{2}+136x-4=0
O‘zidan 4 ayirilsa 0 qoladi.
x=\frac{-136±\sqrt{136^{2}-4\left(-900\right)\left(-4\right)}}{2\left(-900\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -900 ni a, 136 ni b va -4 ni c bilan almashtiring.
x=\frac{-136±\sqrt{18496-4\left(-900\right)\left(-4\right)}}{2\left(-900\right)}
136 kvadratini chiqarish.
x=\frac{-136±\sqrt{18496+3600\left(-4\right)}}{2\left(-900\right)}
-4 ni -900 marotabaga ko'paytirish.
x=\frac{-136±\sqrt{18496-14400}}{2\left(-900\right)}
3600 ni -4 marotabaga ko'paytirish.
x=\frac{-136±\sqrt{4096}}{2\left(-900\right)}
18496 ni -14400 ga qo'shish.
x=\frac{-136±64}{2\left(-900\right)}
4096 ning kvadrat ildizini chiqarish.
x=\frac{-136±64}{-1800}
2 ni -900 marotabaga ko'paytirish.
x=-\frac{72}{-1800}
x=\frac{-136±64}{-1800} tenglamasini yeching, bunda ± musbat. -136 ni 64 ga qo'shish.
x=\frac{1}{25}
\frac{-72}{-1800} ulushini 72 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{200}{-1800}
x=\frac{-136±64}{-1800} tenglamasini yeching, bunda ± manfiy. -136 dan 64 ni ayirish.
x=\frac{1}{9}
\frac{-200}{-1800} ulushini 200 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{1}{25} x=\frac{1}{9}
Tenglama yechildi.
30\times \frac{1}{25}-16\sqrt{\frac{1}{25}}+2=0
30x-16\sqrt{x}+2=0 tenglamasida x uchun \frac{1}{25} ni almashtiring.
0=0
Qisqartirish. x=\frac{1}{25} tenglamani qoniqtiradi.
30\times \frac{1}{9}-16\sqrt{\frac{1}{9}}+2=0
30x-16\sqrt{x}+2=0 tenglamasida x uchun \frac{1}{9} ni almashtiring.
0=0
Qisqartirish. x=\frac{1}{9} tenglamani qoniqtiradi.
x=\frac{1}{25} x=\frac{1}{9}
-16\sqrt{x}=-30x-2 boʻyicha barcha yechimlar roʻyxati.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}