x uchun yechish
x = \frac{\sqrt{287737} + 459}{301} \approx 3,307014029
x=\frac{459-\sqrt{287737}}{301}\approx -0,257180142
Grafik
Baham ko'rish
Klipbordga nusxa olish
301x^{2}-918x=256
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
301x^{2}-918x-256=256-256
Tenglamaning ikkala tarafidan 256 ni ayirish.
301x^{2}-918x-256=0
O‘zidan 256 ayirilsa 0 qoladi.
x=\frac{-\left(-918\right)±\sqrt{\left(-918\right)^{2}-4\times 301\left(-256\right)}}{2\times 301}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 301 ni a, -918 ni b va -256 ni c bilan almashtiring.
x=\frac{-\left(-918\right)±\sqrt{842724-4\times 301\left(-256\right)}}{2\times 301}
-918 kvadratini chiqarish.
x=\frac{-\left(-918\right)±\sqrt{842724-1204\left(-256\right)}}{2\times 301}
-4 ni 301 marotabaga ko'paytirish.
x=\frac{-\left(-918\right)±\sqrt{842724+308224}}{2\times 301}
-1204 ni -256 marotabaga ko'paytirish.
x=\frac{-\left(-918\right)±\sqrt{1150948}}{2\times 301}
842724 ni 308224 ga qo'shish.
x=\frac{-\left(-918\right)±2\sqrt{287737}}{2\times 301}
1150948 ning kvadrat ildizini chiqarish.
x=\frac{918±2\sqrt{287737}}{2\times 301}
-918 ning teskarisi 918 ga teng.
x=\frac{918±2\sqrt{287737}}{602}
2 ni 301 marotabaga ko'paytirish.
x=\frac{2\sqrt{287737}+918}{602}
x=\frac{918±2\sqrt{287737}}{602} tenglamasini yeching, bunda ± musbat. 918 ni 2\sqrt{287737} ga qo'shish.
x=\frac{\sqrt{287737}+459}{301}
918+2\sqrt{287737} ni 602 ga bo'lish.
x=\frac{918-2\sqrt{287737}}{602}
x=\frac{918±2\sqrt{287737}}{602} tenglamasini yeching, bunda ± manfiy. 918 dan 2\sqrt{287737} ni ayirish.
x=\frac{459-\sqrt{287737}}{301}
918-2\sqrt{287737} ni 602 ga bo'lish.
x=\frac{\sqrt{287737}+459}{301} x=\frac{459-\sqrt{287737}}{301}
Tenglama yechildi.
301x^{2}-918x=256
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{301x^{2}-918x}{301}=\frac{256}{301}
Ikki tarafini 301 ga bo‘ling.
x^{2}-\frac{918}{301}x=\frac{256}{301}
301 ga bo'lish 301 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{918}{301}x+\left(-\frac{459}{301}\right)^{2}=\frac{256}{301}+\left(-\frac{459}{301}\right)^{2}
-\frac{918}{301} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{459}{301} olish uchun. Keyin, -\frac{459}{301} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{918}{301}x+\frac{210681}{90601}=\frac{256}{301}+\frac{210681}{90601}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{459}{301} kvadratini chiqarish.
x^{2}-\frac{918}{301}x+\frac{210681}{90601}=\frac{287737}{90601}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{256}{301} ni \frac{210681}{90601} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{459}{301}\right)^{2}=\frac{287737}{90601}
x^{2}-\frac{918}{301}x+\frac{210681}{90601} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{459}{301}\right)^{2}}=\sqrt{\frac{287737}{90601}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{459}{301}=\frac{\sqrt{287737}}{301} x-\frac{459}{301}=-\frac{\sqrt{287737}}{301}
Qisqartirish.
x=\frac{\sqrt{287737}+459}{301} x=\frac{459-\sqrt{287737}}{301}
\frac{459}{301} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}