t uchun yechish
t=\frac{\sqrt{21898}}{2}+75\approx 148,989864171
t=-\frac{\sqrt{21898}}{2}+75\approx 1,010135829
Baham ko'rish
Klipbordga nusxa olish
301+2t^{2}-300t=0
Ikkala tarafdan 300t ni ayirish.
2t^{2}-300t+301=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-300\right)±\sqrt{\left(-300\right)^{2}-4\times 2\times 301}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -300 ni b va 301 ni c bilan almashtiring.
t=\frac{-\left(-300\right)±\sqrt{90000-4\times 2\times 301}}{2\times 2}
-300 kvadratini chiqarish.
t=\frac{-\left(-300\right)±\sqrt{90000-8\times 301}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
t=\frac{-\left(-300\right)±\sqrt{90000-2408}}{2\times 2}
-8 ni 301 marotabaga ko'paytirish.
t=\frac{-\left(-300\right)±\sqrt{87592}}{2\times 2}
90000 ni -2408 ga qo'shish.
t=\frac{-\left(-300\right)±2\sqrt{21898}}{2\times 2}
87592 ning kvadrat ildizini chiqarish.
t=\frac{300±2\sqrt{21898}}{2\times 2}
-300 ning teskarisi 300 ga teng.
t=\frac{300±2\sqrt{21898}}{4}
2 ni 2 marotabaga ko'paytirish.
t=\frac{2\sqrt{21898}+300}{4}
t=\frac{300±2\sqrt{21898}}{4} tenglamasini yeching, bunda ± musbat. 300 ni 2\sqrt{21898} ga qo'shish.
t=\frac{\sqrt{21898}}{2}+75
300+2\sqrt{21898} ni 4 ga bo'lish.
t=\frac{300-2\sqrt{21898}}{4}
t=\frac{300±2\sqrt{21898}}{4} tenglamasini yeching, bunda ± manfiy. 300 dan 2\sqrt{21898} ni ayirish.
t=-\frac{\sqrt{21898}}{2}+75
300-2\sqrt{21898} ni 4 ga bo'lish.
t=\frac{\sqrt{21898}}{2}+75 t=-\frac{\sqrt{21898}}{2}+75
Tenglama yechildi.
301+2t^{2}-300t=0
Ikkala tarafdan 300t ni ayirish.
2t^{2}-300t=-301
Ikkala tarafdan 301 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{2t^{2}-300t}{2}=-\frac{301}{2}
Ikki tarafini 2 ga bo‘ling.
t^{2}+\left(-\frac{300}{2}\right)t=-\frac{301}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
t^{2}-150t=-\frac{301}{2}
-300 ni 2 ga bo'lish.
t^{2}-150t+\left(-75\right)^{2}=-\frac{301}{2}+\left(-75\right)^{2}
-150 ni bo‘lish, x shartining koeffitsienti, 2 ga -75 olish uchun. Keyin, -75 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-150t+5625=-\frac{301}{2}+5625
-75 kvadratini chiqarish.
t^{2}-150t+5625=\frac{10949}{2}
-\frac{301}{2} ni 5625 ga qo'shish.
\left(t-75\right)^{2}=\frac{10949}{2}
t^{2}-150t+5625 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-75\right)^{2}}=\sqrt{\frac{10949}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-75=\frac{\sqrt{21898}}{2} t-75=-\frac{\sqrt{21898}}{2}
Qisqartirish.
t=\frac{\sqrt{21898}}{2}+75 t=-\frac{\sqrt{21898}}{2}+75
75 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}