x uchun yechish
x=-105
x=25
Grafik
Baham ko'rish
Klipbordga nusxa olish
3000=5625-80x-x^{2}
125+x ga 45-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5625-80x-x^{2}=3000
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
5625-80x-x^{2}-3000=0
Ikkala tarafdan 3000 ni ayirish.
2625-80x-x^{2}=0
2625 olish uchun 5625 dan 3000 ni ayirish.
-x^{2}-80x+2625=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\left(-1\right)\times 2625}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -80 ni b va 2625 ni c bilan almashtiring.
x=\frac{-\left(-80\right)±\sqrt{6400-4\left(-1\right)\times 2625}}{2\left(-1\right)}
-80 kvadratini chiqarish.
x=\frac{-\left(-80\right)±\sqrt{6400+4\times 2625}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-80\right)±\sqrt{6400+10500}}{2\left(-1\right)}
4 ni 2625 marotabaga ko'paytirish.
x=\frac{-\left(-80\right)±\sqrt{16900}}{2\left(-1\right)}
6400 ni 10500 ga qo'shish.
x=\frac{-\left(-80\right)±130}{2\left(-1\right)}
16900 ning kvadrat ildizini chiqarish.
x=\frac{80±130}{2\left(-1\right)}
-80 ning teskarisi 80 ga teng.
x=\frac{80±130}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{210}{-2}
x=\frac{80±130}{-2} tenglamasini yeching, bunda ± musbat. 80 ni 130 ga qo'shish.
x=-105
210 ni -2 ga bo'lish.
x=-\frac{50}{-2}
x=\frac{80±130}{-2} tenglamasini yeching, bunda ± manfiy. 80 dan 130 ni ayirish.
x=25
-50 ni -2 ga bo'lish.
x=-105 x=25
Tenglama yechildi.
3000=5625-80x-x^{2}
125+x ga 45-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
5625-80x-x^{2}=3000
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-80x-x^{2}=3000-5625
Ikkala tarafdan 5625 ni ayirish.
-80x-x^{2}=-2625
-2625 olish uchun 3000 dan 5625 ni ayirish.
-x^{2}-80x=-2625
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-80x}{-1}=-\frac{2625}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{80}{-1}\right)x=-\frac{2625}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+80x=-\frac{2625}{-1}
-80 ni -1 ga bo'lish.
x^{2}+80x=2625
-2625 ni -1 ga bo'lish.
x^{2}+80x+40^{2}=2625+40^{2}
80 ni bo‘lish, x shartining koeffitsienti, 2 ga 40 olish uchun. Keyin, 40 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+80x+1600=2625+1600
40 kvadratini chiqarish.
x^{2}+80x+1600=4225
2625 ni 1600 ga qo'shish.
\left(x+40\right)^{2}=4225
x^{2}+80x+1600 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+40\right)^{2}}=\sqrt{4225}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+40=65 x+40=-65
Qisqartirish.
x=25 x=-105
Tenglamaning ikkala tarafidan 40 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}