x uchun yechish
x=\frac{300}{499}\approx 0,601202405
Grafik
Viktorina
Linear Equation
5xshash muammolar:
300 \times \frac{ 5 }{ 100 } x=(300+x) \times \frac{ 3 }{ 100 }
Baham ko'rish
Klipbordga nusxa olish
300\times \frac{1}{20}x=\left(300+x\right)\times \frac{3}{100}
\frac{5}{100} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{300}{20}x=\left(300+x\right)\times \frac{3}{100}
\frac{300}{20} hosil qilish uchun 300 va \frac{1}{20} ni ko'paytirish.
15x=\left(300+x\right)\times \frac{3}{100}
15 ni olish uchun 300 ni 20 ga bo‘ling.
15x=300\times \frac{3}{100}+x\times \frac{3}{100}
300+x ga \frac{3}{100} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
15x=\frac{300\times 3}{100}+x\times \frac{3}{100}
300\times \frac{3}{100} ni yagona kasrga aylantiring.
15x=\frac{900}{100}+x\times \frac{3}{100}
900 hosil qilish uchun 300 va 3 ni ko'paytirish.
15x=9+x\times \frac{3}{100}
9 ni olish uchun 900 ni 100 ga bo‘ling.
15x-x\times \frac{3}{100}=9
Ikkala tarafdan x\times \frac{3}{100} ni ayirish.
\frac{1497}{100}x=9
\frac{1497}{100}x ni olish uchun 15x va -x\times \frac{3}{100} ni birlashtirish.
x=9\times \frac{100}{1497}
Ikki tarafini \frac{100}{1497} va teskari kasri \frac{1497}{100} ga ko‘paytiring.
x=\frac{9\times 100}{1497}
9\times \frac{100}{1497} ni yagona kasrga aylantiring.
x=\frac{900}{1497}
900 hosil qilish uchun 9 va 100 ni ko'paytirish.
x=\frac{300}{499}
\frac{900}{1497} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}