Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-8x-49x^{2}=30
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-8x-49x^{2}-30=0
Ikkala tarafdan 30 ni ayirish.
-49x^{2}-8x-30=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-49\right)\left(-30\right)}}{2\left(-49\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -49 ni a, -8 ni b va -30 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-49\right)\left(-30\right)}}{2\left(-49\right)}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64+196\left(-30\right)}}{2\left(-49\right)}
-4 ni -49 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64-5880}}{2\left(-49\right)}
196 ni -30 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{-5816}}{2\left(-49\right)}
64 ni -5880 ga qo'shish.
x=\frac{-\left(-8\right)±2\sqrt{1454}i}{2\left(-49\right)}
-5816 ning kvadrat ildizini chiqarish.
x=\frac{8±2\sqrt{1454}i}{2\left(-49\right)}
-8 ning teskarisi 8 ga teng.
x=\frac{8±2\sqrt{1454}i}{-98}
2 ni -49 marotabaga ko'paytirish.
x=\frac{8+2\sqrt{1454}i}{-98}
x=\frac{8±2\sqrt{1454}i}{-98} tenglamasini yeching, bunda ± musbat. 8 ni 2i\sqrt{1454} ga qo'shish.
x=\frac{-\sqrt{1454}i-4}{49}
8+2i\sqrt{1454} ni -98 ga bo'lish.
x=\frac{-2\sqrt{1454}i+8}{-98}
x=\frac{8±2\sqrt{1454}i}{-98} tenglamasini yeching, bunda ± manfiy. 8 dan 2i\sqrt{1454} ni ayirish.
x=\frac{-4+\sqrt{1454}i}{49}
8-2i\sqrt{1454} ni -98 ga bo'lish.
x=\frac{-\sqrt{1454}i-4}{49} x=\frac{-4+\sqrt{1454}i}{49}
Tenglama yechildi.
-8x-49x^{2}=30
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-49x^{2}-8x=30
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-49x^{2}-8x}{-49}=\frac{30}{-49}
Ikki tarafini -49 ga bo‘ling.
x^{2}+\left(-\frac{8}{-49}\right)x=\frac{30}{-49}
-49 ga bo'lish -49 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{8}{49}x=\frac{30}{-49}
-8 ni -49 ga bo'lish.
x^{2}+\frac{8}{49}x=-\frac{30}{49}
30 ni -49 ga bo'lish.
x^{2}+\frac{8}{49}x+\left(\frac{4}{49}\right)^{2}=-\frac{30}{49}+\left(\frac{4}{49}\right)^{2}
\frac{8}{49} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{4}{49} olish uchun. Keyin, \frac{4}{49} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{8}{49}x+\frac{16}{2401}=-\frac{30}{49}+\frac{16}{2401}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{4}{49} kvadratini chiqarish.
x^{2}+\frac{8}{49}x+\frac{16}{2401}=-\frac{1454}{2401}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{30}{49} ni \frac{16}{2401} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{4}{49}\right)^{2}=-\frac{1454}{2401}
x^{2}+\frac{8}{49}x+\frac{16}{2401} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{4}{49}\right)^{2}}=\sqrt{-\frac{1454}{2401}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{4}{49}=\frac{\sqrt{1454}i}{49} x+\frac{4}{49}=-\frac{\sqrt{1454}i}{49}
Qisqartirish.
x=\frac{-4+\sqrt{1454}i}{49} x=\frac{-\sqrt{1454}i-4}{49}
Tenglamaning ikkala tarafidan \frac{4}{49} ni ayirish.