Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a+b=-19 ab=30\left(-63\right)=-1890
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 30s^{2}+as+bs-63 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-1890 2,-945 3,-630 5,-378 6,-315 7,-270 9,-210 10,-189 14,-135 15,-126 18,-105 21,-90 27,-70 30,-63 35,-54 42,-45
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -1890-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-1890=-1889 2-945=-943 3-630=-627 5-378=-373 6-315=-309 7-270=-263 9-210=-201 10-189=-179 14-135=-121 15-126=-111 18-105=-87 21-90=-69 27-70=-43 30-63=-33 35-54=-19 42-45=-3
Har bir juftlik yigʻindisini hisoblang.
a=-54 b=35
Yechim – -19 yigʻindisini beruvchi juftlik.
\left(30s^{2}-54s\right)+\left(35s-63\right)
30s^{2}-19s-63 ni \left(30s^{2}-54s\right)+\left(35s-63\right) sifatida qaytadan yozish.
6s\left(5s-9\right)+7\left(5s-9\right)
Birinchi guruhda 6s ni va ikkinchi guruhda 7 ni faktordan chiqaring.
\left(5s-9\right)\left(6s+7\right)
Distributiv funktsiyasidan foydalangan holda 5s-9 umumiy terminini chiqaring.
30s^{2}-19s-63=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
s=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 30\left(-63\right)}}{2\times 30}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
s=\frac{-\left(-19\right)±\sqrt{361-4\times 30\left(-63\right)}}{2\times 30}
-19 kvadratini chiqarish.
s=\frac{-\left(-19\right)±\sqrt{361-120\left(-63\right)}}{2\times 30}
-4 ni 30 marotabaga ko'paytirish.
s=\frac{-\left(-19\right)±\sqrt{361+7560}}{2\times 30}
-120 ni -63 marotabaga ko'paytirish.
s=\frac{-\left(-19\right)±\sqrt{7921}}{2\times 30}
361 ni 7560 ga qo'shish.
s=\frac{-\left(-19\right)±89}{2\times 30}
7921 ning kvadrat ildizini chiqarish.
s=\frac{19±89}{2\times 30}
-19 ning teskarisi 19 ga teng.
s=\frac{19±89}{60}
2 ni 30 marotabaga ko'paytirish.
s=\frac{108}{60}
s=\frac{19±89}{60} tenglamasini yeching, bunda ± musbat. 19 ni 89 ga qo'shish.
s=\frac{9}{5}
\frac{108}{60} ulushini 12 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
s=-\frac{70}{60}
s=\frac{19±89}{60} tenglamasini yeching, bunda ± manfiy. 19 dan 89 ni ayirish.
s=-\frac{7}{6}
\frac{-70}{60} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
30s^{2}-19s-63=30\left(s-\frac{9}{5}\right)\left(s-\left(-\frac{7}{6}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{9}{5} ga va x_{2} uchun -\frac{7}{6} ga bo‘ling.
30s^{2}-19s-63=30\left(s-\frac{9}{5}\right)\left(s+\frac{7}{6}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
30s^{2}-19s-63=30\times \frac{5s-9}{5}\left(s+\frac{7}{6}\right)
Umumiy maxrajni topib va suratlarni ayirib \frac{9}{5} ni s dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
30s^{2}-19s-63=30\times \frac{5s-9}{5}\times \frac{6s+7}{6}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{7}{6} ni s ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
30s^{2}-19s-63=30\times \frac{\left(5s-9\right)\left(6s+7\right)}{5\times 6}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{5s-9}{5} ni \frac{6s+7}{6} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
30s^{2}-19s-63=30\times \frac{\left(5s-9\right)\left(6s+7\right)}{30}
5 ni 6 marotabaga ko'paytirish.
30s^{2}-19s-63=\left(5s-9\right)\left(6s+7\right)
30 va 30 ichida eng katta umumiy 30 faktorini bekor qiling.