A uchun yechish
\left\{\begin{matrix}A=-\frac{V}{4\Omega n^{2}}\text{, }&V\neq 0\text{ and }n\neq 0\text{ and }\Omega \neq 0\\A\neq 0\text{, }&\Omega =0\text{ and }V=0\text{ and }n\neq 0\end{matrix}\right,
V uchun yechish
V=-4A\Omega n^{2}
A\neq 0\text{ and }n\neq 0
Baham ko'rish
Klipbordga nusxa olish
36\Omega \times 3An^{2}=5V-32V
A qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3An^{2} ga ko'paytirish.
108\Omega An^{2}=5V-32V
108 hosil qilish uchun 36 va 3 ni ko'paytirish.
108\Omega An^{2}=-27V
-27V ni olish uchun 5V va -32V ni birlashtirish.
108\Omega n^{2}A=-27V
Tenglama standart shaklda.
\frac{108\Omega n^{2}A}{108\Omega n^{2}}=-\frac{27V}{108\Omega n^{2}}
Ikki tarafini 108\Omega n^{2} ga bo‘ling.
A=-\frac{27V}{108\Omega n^{2}}
108\Omega n^{2} ga bo'lish 108\Omega n^{2} ga ko'paytirishni bekor qiladi.
A=-\frac{V}{4\Omega n^{2}}
-27V ni 108\Omega n^{2} ga bo'lish.
A=-\frac{V}{4\Omega n^{2}}\text{, }A\neq 0
A qiymati 0 teng bo‘lmaydi.
36\Omega \times 3An^{2}=5V-32V
Tenglamaning ikkala tarafini 3An^{2} ga ko'paytirish.
108\Omega An^{2}=5V-32V
108 hosil qilish uchun 36 va 3 ni ko'paytirish.
108\Omega An^{2}=-27V
-27V ni olish uchun 5V va -32V ni birlashtirish.
-27V=108\Omega An^{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-27V=108A\Omega n^{2}
Tenglama standart shaklda.
\frac{-27V}{-27}=\frac{108A\Omega n^{2}}{-27}
Ikki tarafini -27 ga bo‘ling.
V=\frac{108A\Omega n^{2}}{-27}
-27 ga bo'lish -27 ga ko'paytirishni bekor qiladi.
V=-4A\Omega n^{2}
108\Omega An^{2} ni -27 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}