x uchun yechish
x=\frac{2\sqrt{10}-4}{3}\approx 0,774851773
x=\frac{-2\sqrt{10}-4}{3}\approx -3,44151844
Grafik
Baham ko'rish
Klipbordga nusxa olish
300x^{2}+800x-800=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-800±\sqrt{800^{2}-4\times 300\left(-800\right)}}{2\times 300}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 300 ni a, 800 ni b va -800 ni c bilan almashtiring.
x=\frac{-800±\sqrt{640000-4\times 300\left(-800\right)}}{2\times 300}
800 kvadratini chiqarish.
x=\frac{-800±\sqrt{640000-1200\left(-800\right)}}{2\times 300}
-4 ni 300 marotabaga ko'paytirish.
x=\frac{-800±\sqrt{640000+960000}}{2\times 300}
-1200 ni -800 marotabaga ko'paytirish.
x=\frac{-800±\sqrt{1600000}}{2\times 300}
640000 ni 960000 ga qo'shish.
x=\frac{-800±400\sqrt{10}}{2\times 300}
1600000 ning kvadrat ildizini chiqarish.
x=\frac{-800±400\sqrt{10}}{600}
2 ni 300 marotabaga ko'paytirish.
x=\frac{400\sqrt{10}-800}{600}
x=\frac{-800±400\sqrt{10}}{600} tenglamasini yeching, bunda ± musbat. -800 ni 400\sqrt{10} ga qo'shish.
x=\frac{2\sqrt{10}-4}{3}
-800+400\sqrt{10} ni 600 ga bo'lish.
x=\frac{-400\sqrt{10}-800}{600}
x=\frac{-800±400\sqrt{10}}{600} tenglamasini yeching, bunda ± manfiy. -800 dan 400\sqrt{10} ni ayirish.
x=\frac{-2\sqrt{10}-4}{3}
-800-400\sqrt{10} ni 600 ga bo'lish.
x=\frac{2\sqrt{10}-4}{3} x=\frac{-2\sqrt{10}-4}{3}
Tenglama yechildi.
300x^{2}+800x-800=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
300x^{2}+800x-800-\left(-800\right)=-\left(-800\right)
800 ni tenglamaning ikkala tarafiga qo'shish.
300x^{2}+800x=-\left(-800\right)
O‘zidan -800 ayirilsa 0 qoladi.
300x^{2}+800x=800
0 dan -800 ni ayirish.
\frac{300x^{2}+800x}{300}=\frac{800}{300}
Ikki tarafini 300 ga bo‘ling.
x^{2}+\frac{800}{300}x=\frac{800}{300}
300 ga bo'lish 300 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{8}{3}x=\frac{800}{300}
\frac{800}{300} ulushini 100 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{8}{3}x=\frac{8}{3}
\frac{800}{300} ulushini 100 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=\frac{8}{3}+\left(\frac{4}{3}\right)^{2}
\frac{8}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{4}{3} olish uchun. Keyin, \frac{4}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{8}{3}+\frac{16}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{4}{3} kvadratini chiqarish.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{40}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{8}{3} ni \frac{16}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{4}{3}\right)^{2}=\frac{40}{9}
x^{2}+\frac{8}{3}x+\frac{16}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{40}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{4}{3}=\frac{2\sqrt{10}}{3} x+\frac{4}{3}=-\frac{2\sqrt{10}}{3}
Qisqartirish.
x=\frac{2\sqrt{10}-4}{3} x=\frac{-2\sqrt{10}-4}{3}
Tenglamaning ikkala tarafidan \frac{4}{3} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}