Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(3x+6\right)\left(x-2\right)=x-4+8x
3 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-12=x-4+8x
3x+6 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-12=9x-4
9x ni olish uchun x va 8x ni birlashtirish.
3x^{2}-12-9x=-4
Ikkala tarafdan 9x ni ayirish.
3x^{2}-12-9x+4=0
4 ni ikki tarafga qo’shing.
3x^{2}-8-9x=0
-8 olish uchun -12 va 4'ni qo'shing.
3x^{2}-9x-8=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\left(-8\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -9 ni b va -8 ni c bilan almashtiring.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 3\left(-8\right)}}{2\times 3}
-9 kvadratini chiqarish.
x=\frac{-\left(-9\right)±\sqrt{81-12\left(-8\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{81+96}}{2\times 3}
-12 ni -8 marotabaga ko'paytirish.
x=\frac{-\left(-9\right)±\sqrt{177}}{2\times 3}
81 ni 96 ga qo'shish.
x=\frac{9±\sqrt{177}}{2\times 3}
-9 ning teskarisi 9 ga teng.
x=\frac{9±\sqrt{177}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{177}+9}{6}
x=\frac{9±\sqrt{177}}{6} tenglamasini yeching, bunda ± musbat. 9 ni \sqrt{177} ga qo'shish.
x=\frac{\sqrt{177}}{6}+\frac{3}{2}
9+\sqrt{177} ni 6 ga bo'lish.
x=\frac{9-\sqrt{177}}{6}
x=\frac{9±\sqrt{177}}{6} tenglamasini yeching, bunda ± manfiy. 9 dan \sqrt{177} ni ayirish.
x=-\frac{\sqrt{177}}{6}+\frac{3}{2}
9-\sqrt{177} ni 6 ga bo'lish.
x=\frac{\sqrt{177}}{6}+\frac{3}{2} x=-\frac{\sqrt{177}}{6}+\frac{3}{2}
Tenglama yechildi.
\left(3x+6\right)\left(x-2\right)=x-4+8x
3 ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-12=x-4+8x
3x+6 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-12=9x-4
9x ni olish uchun x va 8x ni birlashtirish.
3x^{2}-12-9x=-4
Ikkala tarafdan 9x ni ayirish.
3x^{2}-9x=-4+12
12 ni ikki tarafga qo’shing.
3x^{2}-9x=8
8 olish uchun -4 va 12'ni qo'shing.
\frac{3x^{2}-9x}{3}=\frac{8}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}+\left(-\frac{9}{3}\right)x=\frac{8}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-3x=\frac{8}{3}
-9 ni 3 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{8}{3}+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=\frac{8}{3}+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{59}{12}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{8}{3} ni \frac{9}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{2}\right)^{2}=\frac{59}{12}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{59}{12}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{\sqrt{177}}{6} x-\frac{3}{2}=-\frac{\sqrt{177}}{6}
Qisqartirish.
x=\frac{\sqrt{177}}{6}+\frac{3}{2} x=-\frac{\sqrt{177}}{6}+\frac{3}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.