Asosiy tarkibga oʻtish
z uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3z^{2}+3z+20=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
z=\frac{-3±\sqrt{3^{2}-4\times 3\times 20}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 3 ni b va 20 ni c bilan almashtiring.
z=\frac{-3±\sqrt{9-4\times 3\times 20}}{2\times 3}
3 kvadratini chiqarish.
z=\frac{-3±\sqrt{9-12\times 20}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
z=\frac{-3±\sqrt{9-240}}{2\times 3}
-12 ni 20 marotabaga ko'paytirish.
z=\frac{-3±\sqrt{-231}}{2\times 3}
9 ni -240 ga qo'shish.
z=\frac{-3±\sqrt{231}i}{2\times 3}
-231 ning kvadrat ildizini chiqarish.
z=\frac{-3±\sqrt{231}i}{6}
2 ni 3 marotabaga ko'paytirish.
z=\frac{-3+\sqrt{231}i}{6}
z=\frac{-3±\sqrt{231}i}{6} tenglamasini yeching, bunda ± musbat. -3 ni i\sqrt{231} ga qo'shish.
z=\frac{\sqrt{231}i}{6}-\frac{1}{2}
-3+i\sqrt{231} ni 6 ga bo'lish.
z=\frac{-\sqrt{231}i-3}{6}
z=\frac{-3±\sqrt{231}i}{6} tenglamasini yeching, bunda ± manfiy. -3 dan i\sqrt{231} ni ayirish.
z=-\frac{\sqrt{231}i}{6}-\frac{1}{2}
-3-i\sqrt{231} ni 6 ga bo'lish.
z=\frac{\sqrt{231}i}{6}-\frac{1}{2} z=-\frac{\sqrt{231}i}{6}-\frac{1}{2}
Tenglama yechildi.
3z^{2}+3z+20=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3z^{2}+3z+20-20=-20
Tenglamaning ikkala tarafidan 20 ni ayirish.
3z^{2}+3z=-20
O‘zidan 20 ayirilsa 0 qoladi.
\frac{3z^{2}+3z}{3}=-\frac{20}{3}
Ikki tarafini 3 ga bo‘ling.
z^{2}+\frac{3}{3}z=-\frac{20}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
z^{2}+z=-\frac{20}{3}
3 ni 3 ga bo'lish.
z^{2}+z+\left(\frac{1}{2}\right)^{2}=-\frac{20}{3}+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
z^{2}+z+\frac{1}{4}=-\frac{20}{3}+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
z^{2}+z+\frac{1}{4}=-\frac{77}{12}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{20}{3} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(z+\frac{1}{2}\right)^{2}=-\frac{77}{12}
z^{2}+z+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(z+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{77}{12}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
z+\frac{1}{2}=\frac{\sqrt{231}i}{6} z+\frac{1}{2}=-\frac{\sqrt{231}i}{6}
Qisqartirish.
z=\frac{\sqrt{231}i}{6}-\frac{1}{2} z=-\frac{\sqrt{231}i}{6}-\frac{1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.