y uchun yechish
y=2
y = \frac{4}{3} = 1\frac{1}{3} \approx 1,333333333
Grafik
Baham ko'rish
Klipbordga nusxa olish
3y^{2}-6y=4y-8
3y ga y-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3y^{2}-6y-4y=-8
Ikkala tarafdan 4y ni ayirish.
3y^{2}-10y=-8
-10y ni olish uchun -6y va -4y ni birlashtirish.
3y^{2}-10y+8=0
8 ni ikki tarafga qo’shing.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\times 8}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -10 ni b va 8 ni c bilan almashtiring.
y=\frac{-\left(-10\right)±\sqrt{100-4\times 3\times 8}}{2\times 3}
-10 kvadratini chiqarish.
y=\frac{-\left(-10\right)±\sqrt{100-12\times 8}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
y=\frac{-\left(-10\right)±\sqrt{100-96}}{2\times 3}
-12 ni 8 marotabaga ko'paytirish.
y=\frac{-\left(-10\right)±\sqrt{4}}{2\times 3}
100 ni -96 ga qo'shish.
y=\frac{-\left(-10\right)±2}{2\times 3}
4 ning kvadrat ildizini chiqarish.
y=\frac{10±2}{2\times 3}
-10 ning teskarisi 10 ga teng.
y=\frac{10±2}{6}
2 ni 3 marotabaga ko'paytirish.
y=\frac{12}{6}
y=\frac{10±2}{6} tenglamasini yeching, bunda ± musbat. 10 ni 2 ga qo'shish.
y=2
12 ni 6 ga bo'lish.
y=\frac{8}{6}
y=\frac{10±2}{6} tenglamasini yeching, bunda ± manfiy. 10 dan 2 ni ayirish.
y=\frac{4}{3}
\frac{8}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
y=2 y=\frac{4}{3}
Tenglama yechildi.
3y^{2}-6y=4y-8
3y ga y-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3y^{2}-6y-4y=-8
Ikkala tarafdan 4y ni ayirish.
3y^{2}-10y=-8
-10y ni olish uchun -6y va -4y ni birlashtirish.
\frac{3y^{2}-10y}{3}=-\frac{8}{3}
Ikki tarafini 3 ga bo‘ling.
y^{2}-\frac{10}{3}y=-\frac{8}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
y^{2}-\frac{10}{3}y+\left(-\frac{5}{3}\right)^{2}=-\frac{8}{3}+\left(-\frac{5}{3}\right)^{2}
-\frac{10}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{3} olish uchun. Keyin, -\frac{5}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-\frac{10}{3}y+\frac{25}{9}=-\frac{8}{3}+\frac{25}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{3} kvadratini chiqarish.
y^{2}-\frac{10}{3}y+\frac{25}{9}=\frac{1}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{8}{3} ni \frac{25}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(y-\frac{5}{3}\right)^{2}=\frac{1}{9}
y^{2}-\frac{10}{3}y+\frac{25}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-\frac{5}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-\frac{5}{3}=\frac{1}{3} y-\frac{5}{3}=-\frac{1}{3}
Qisqartirish.
y=2 y=\frac{4}{3}
\frac{5}{3} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}