y uchun yechish
y=4
y=-4
Grafik
Viktorina
Polynomial
3 y ^ { 2 } = 48
Baham ko'rish
Klipbordga nusxa olish
y^{2}=\frac{48}{3}
Ikki tarafini 3 ga bo‘ling.
y^{2}=16
16 ni olish uchun 48 ni 3 ga bo‘ling.
y^{2}-16=0
Ikkala tarafdan 16 ni ayirish.
\left(y-4\right)\left(y+4\right)=0
Hisoblang: y^{2}-16. y^{2}-16 ni y^{2}-4^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
y=4 y=-4
Tenglamani yechish uchun y-4=0 va y+4=0 ni yeching.
y^{2}=\frac{48}{3}
Ikki tarafini 3 ga bo‘ling.
y^{2}=16
16 ni olish uchun 48 ni 3 ga bo‘ling.
y=4 y=-4
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y^{2}=\frac{48}{3}
Ikki tarafini 3 ga bo‘ling.
y^{2}=16
16 ni olish uchun 48 ni 3 ga bo‘ling.
y^{2}-16=0
Ikkala tarafdan 16 ni ayirish.
y=\frac{0±\sqrt{0^{2}-4\left(-16\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -16 ni c bilan almashtiring.
y=\frac{0±\sqrt{-4\left(-16\right)}}{2}
0 kvadratini chiqarish.
y=\frac{0±\sqrt{64}}{2}
-4 ni -16 marotabaga ko'paytirish.
y=\frac{0±8}{2}
64 ning kvadrat ildizini chiqarish.
y=4
y=\frac{0±8}{2} tenglamasini yeching, bunda ± musbat. 8 ni 2 ga bo'lish.
y=-4
y=\frac{0±8}{2} tenglamasini yeching, bunda ± manfiy. -8 ni 2 ga bo'lish.
y=4 y=-4
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}