Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3y^{2}+21y=0
21y ni ikki tarafga qo’shing.
y\left(3y+21\right)=0
y omili.
y=0 y=-7
Tenglamani yechish uchun y=0 va 3y+21=0 ni yeching.
3y^{2}+21y=0
21y ni ikki tarafga qo’shing.
y=\frac{-21±\sqrt{21^{2}}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 21 ni b va 0 ni c bilan almashtiring.
y=\frac{-21±21}{2\times 3}
21^{2} ning kvadrat ildizini chiqarish.
y=\frac{-21±21}{6}
2 ni 3 marotabaga ko'paytirish.
y=\frac{0}{6}
y=\frac{-21±21}{6} tenglamasini yeching, bunda ± musbat. -21 ni 21 ga qo'shish.
y=0
0 ni 6 ga bo'lish.
y=-\frac{42}{6}
y=\frac{-21±21}{6} tenglamasini yeching, bunda ± manfiy. -21 dan 21 ni ayirish.
y=-7
-42 ni 6 ga bo'lish.
y=0 y=-7
Tenglama yechildi.
3y^{2}+21y=0
21y ni ikki tarafga qo’shing.
\frac{3y^{2}+21y}{3}=\frac{0}{3}
Ikki tarafini 3 ga bo‘ling.
y^{2}+\frac{21}{3}y=\frac{0}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
y^{2}+7y=\frac{0}{3}
21 ni 3 ga bo'lish.
y^{2}+7y=0
0 ni 3 ga bo'lish.
y^{2}+7y+\left(\frac{7}{2}\right)^{2}=\left(\frac{7}{2}\right)^{2}
7 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{2} olish uchun. Keyin, \frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+7y+\frac{49}{4}=\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{2} kvadratini chiqarish.
\left(y+\frac{7}{2}\right)^{2}=\frac{49}{4}
y^{2}+7y+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+\frac{7}{2}=\frac{7}{2} y+\frac{7}{2}=-\frac{7}{2}
Qisqartirish.
y=0 y=-7
Tenglamaning ikkala tarafidan \frac{7}{2} ni ayirish.