Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3y^{2}+y-7=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-1±\sqrt{1^{2}-4\times 3\left(-7\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, 1 ni b va -7 ni c bilan almashtiring.
y=\frac{-1±\sqrt{1-4\times 3\left(-7\right)}}{2\times 3}
1 kvadratini chiqarish.
y=\frac{-1±\sqrt{1-12\left(-7\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
y=\frac{-1±\sqrt{1+84}}{2\times 3}
-12 ni -7 marotabaga ko'paytirish.
y=\frac{-1±\sqrt{85}}{2\times 3}
1 ni 84 ga qo'shish.
y=\frac{-1±\sqrt{85}}{6}
2 ni 3 marotabaga ko'paytirish.
y=\frac{\sqrt{85}-1}{6}
y=\frac{-1±\sqrt{85}}{6} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{85} ga qo'shish.
y=\frac{-\sqrt{85}-1}{6}
y=\frac{-1±\sqrt{85}}{6} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{85} ni ayirish.
y=\frac{\sqrt{85}-1}{6} y=\frac{-\sqrt{85}-1}{6}
Tenglama yechildi.
3y^{2}+y-7=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
3y^{2}+y-7-\left(-7\right)=-\left(-7\right)
7 ni tenglamaning ikkala tarafiga qo'shish.
3y^{2}+y=-\left(-7\right)
O‘zidan -7 ayirilsa 0 qoladi.
3y^{2}+y=7
0 dan -7 ni ayirish.
\frac{3y^{2}+y}{3}=\frac{7}{3}
Ikki tarafini 3 ga bo‘ling.
y^{2}+\frac{1}{3}y=\frac{7}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
y^{2}+\frac{1}{3}y+\left(\frac{1}{6}\right)^{2}=\frac{7}{3}+\left(\frac{1}{6}\right)^{2}
\frac{1}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{6} olish uchun. Keyin, \frac{1}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+\frac{1}{3}y+\frac{1}{36}=\frac{7}{3}+\frac{1}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{6} kvadratini chiqarish.
y^{2}+\frac{1}{3}y+\frac{1}{36}=\frac{85}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{7}{3} ni \frac{1}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(y+\frac{1}{6}\right)^{2}=\frac{85}{36}
y^{2}+\frac{1}{3}y+\frac{1}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+\frac{1}{6}\right)^{2}}=\sqrt{\frac{85}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+\frac{1}{6}=\frac{\sqrt{85}}{6} y+\frac{1}{6}=-\frac{\sqrt{85}}{6}
Qisqartirish.
y=\frac{\sqrt{85}-1}{6} y=\frac{-\sqrt{85}-1}{6}
Tenglamaning ikkala tarafidan \frac{1}{6} ni ayirish.