x, y uchun yechish
x=4
y=3
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x-y=9,2x+3y=17
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
3x-y=9
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
3x=y+9
y ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{1}{3}\left(y+9\right)
Ikki tarafini 3 ga bo‘ling.
x=\frac{1}{3}y+3
\frac{1}{3} ni y+9 marotabaga ko'paytirish.
2\left(\frac{1}{3}y+3\right)+3y=17
\frac{y}{3}+3 ni x uchun boshqa tenglamada almashtirish, 2x+3y=17.
\frac{2}{3}y+6+3y=17
2 ni \frac{y}{3}+3 marotabaga ko'paytirish.
\frac{11}{3}y+6=17
\frac{2y}{3} ni 3y ga qo'shish.
\frac{11}{3}y=11
Tenglamaning ikkala tarafidan 6 ni ayirish.
y=3
Tenglamaning ikki tarafini \frac{11}{3} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=\frac{1}{3}\times 3+3
3 ni y uchun x=\frac{1}{3}y+3 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=1+3
\frac{1}{3} ni 3 marotabaga ko'paytirish.
x=4
3 ni 1 ga qo'shish.
x=4,y=3
Tizim hal qilindi.
3x-y=9,2x+3y=17
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}3&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\17\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}3&-1\\2&3\end{matrix}\right))\left(\begin{matrix}3&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&3\end{matrix}\right))\left(\begin{matrix}9\\17\end{matrix}\right)
\left(\begin{matrix}3&-1\\2&3\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&3\end{matrix}\right))\left(\begin{matrix}9\\17\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\2&3\end{matrix}\right))\left(\begin{matrix}9\\17\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-2\right)}&-\frac{-1}{3\times 3-\left(-2\right)}\\-\frac{2}{3\times 3-\left(-2\right)}&\frac{3}{3\times 3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}9\\17\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{1}{11}\\-\frac{2}{11}&\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}9\\17\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 9+\frac{1}{11}\times 17\\-\frac{2}{11}\times 9+\frac{3}{11}\times 17\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=4,y=3
x va y matritsa elementlarini chiqarib olish.
3x-y=9,2x+3y=17
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
2\times 3x+2\left(-1\right)y=2\times 9,3\times 2x+3\times 3y=3\times 17
3x va 2x ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 2 ga va ikkinchining har bir tarafidagi barcha shartlarni 3 ga ko'paytiring.
6x-2y=18,6x+9y=51
Qisqartirish.
6x-6x-2y-9y=18-51
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 6x-2y=18 dan 6x+9y=51 ni ayirish.
-2y-9y=18-51
6x ni -6x ga qo'shish. 6x va -6x shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-11y=18-51
-2y ni -9y ga qo'shish.
-11y=-33
18 ni -51 ga qo'shish.
y=3
Ikki tarafini -11 ga bo‘ling.
2x+3\times 3=17
3 ni y uchun 2x+3y=17 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
2x+9=17
3 ni 3 marotabaga ko'paytirish.
2x=8
Tenglamaning ikkala tarafidan 9 ni ayirish.
x=4
Ikki tarafini 2 ga bo‘ling.
x=4,y=3
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}