x uchun yechish (complex solution)
x=\frac{-\sqrt{35}i+5}{6}\approx 0,833333333-0,986013297i
x=\frac{5+\sqrt{35}i}{6}\approx 0,833333333+0,986013297i
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x-5-3x^{2}=-2x
Ikkala tarafdan 3x^{2} ni ayirish.
3x-5-3x^{2}+2x=0
2x ni ikki tarafga qo’shing.
5x-5-3x^{2}=0
5x ni olish uchun 3x va 2x ni birlashtirish.
-3x^{2}+5x-5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-5±\sqrt{5^{2}-4\left(-3\right)\left(-5\right)}}{2\left(-3\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -3 ni a, 5 ni b va -5 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\left(-3\right)\left(-5\right)}}{2\left(-3\right)}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25+12\left(-5\right)}}{2\left(-3\right)}
-4 ni -3 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25-60}}{2\left(-3\right)}
12 ni -5 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{-35}}{2\left(-3\right)}
25 ni -60 ga qo'shish.
x=\frac{-5±\sqrt{35}i}{2\left(-3\right)}
-35 ning kvadrat ildizini chiqarish.
x=\frac{-5±\sqrt{35}i}{-6}
2 ni -3 marotabaga ko'paytirish.
x=\frac{-5+\sqrt{35}i}{-6}
x=\frac{-5±\sqrt{35}i}{-6} tenglamasini yeching, bunda ± musbat. -5 ni i\sqrt{35} ga qo'shish.
x=\frac{-\sqrt{35}i+5}{6}
-5+i\sqrt{35} ni -6 ga bo'lish.
x=\frac{-\sqrt{35}i-5}{-6}
x=\frac{-5±\sqrt{35}i}{-6} tenglamasini yeching, bunda ± manfiy. -5 dan i\sqrt{35} ni ayirish.
x=\frac{5+\sqrt{35}i}{6}
-5-i\sqrt{35} ni -6 ga bo'lish.
x=\frac{-\sqrt{35}i+5}{6} x=\frac{5+\sqrt{35}i}{6}
Tenglama yechildi.
3x-5-3x^{2}=-2x
Ikkala tarafdan 3x^{2} ni ayirish.
3x-5-3x^{2}+2x=0
2x ni ikki tarafga qo’shing.
5x-5-3x^{2}=0
5x ni olish uchun 3x va 2x ni birlashtirish.
5x-3x^{2}=5
5 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-3x^{2}+5x=5
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-3x^{2}+5x}{-3}=\frac{5}{-3}
Ikki tarafini -3 ga bo‘ling.
x^{2}+\frac{5}{-3}x=\frac{5}{-3}
-3 ga bo'lish -3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{5}{3}x=\frac{5}{-3}
5 ni -3 ga bo'lish.
x^{2}-\frac{5}{3}x=-\frac{5}{3}
5 ni -3 ga bo'lish.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{5}{3}+\left(-\frac{5}{6}\right)^{2}
-\frac{5}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{6} olish uchun. Keyin, -\frac{5}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{5}{3}+\frac{25}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{6} kvadratini chiqarish.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{35}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{5}{3} ni \frac{25}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{5}{6}\right)^{2}=-\frac{35}{36}
x^{2}-\frac{5}{3}x+\frac{25}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{-\frac{35}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{6}=\frac{\sqrt{35}i}{6} x-\frac{5}{6}=-\frac{\sqrt{35}i}{6}
Qisqartirish.
x=\frac{5+\sqrt{35}i}{6} x=\frac{-\sqrt{35}i+5}{6}
\frac{5}{6} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}