Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x\left(x-2\right)-1=-\left(x-1\right)
x qiymati 2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-2 ga, x-2,2-x ning eng kichik karralisiga ko‘paytiring.
3x^{2}-6x-1=-\left(x-1\right)
3x ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-6x-1=-x+1
x-1 teskarisini topish uchun har birining teskarisini toping.
3x^{2}-6x-1+x=1
x ni ikki tarafga qo’shing.
3x^{2}-5x-1=1
-5x ni olish uchun -6x va x ni birlashtirish.
3x^{2}-5x-1-1=0
Ikkala tarafdan 1 ni ayirish.
3x^{2}-5x-2=0
-2 olish uchun -1 dan 1 ni ayirish.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\left(-2\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -5 ni b va -2 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25-12\left(-2\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 3}
-12 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 3}
25 ni 24 ga qo'shish.
x=\frac{-\left(-5\right)±7}{2\times 3}
49 ning kvadrat ildizini chiqarish.
x=\frac{5±7}{2\times 3}
-5 ning teskarisi 5 ga teng.
x=\frac{5±7}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{12}{6}
x=\frac{5±7}{6} tenglamasini yeching, bunda ± musbat. 5 ni 7 ga qo'shish.
x=2
12 ni 6 ga bo'lish.
x=-\frac{2}{6}
x=\frac{5±7}{6} tenglamasini yeching, bunda ± manfiy. 5 dan 7 ni ayirish.
x=-\frac{1}{3}
\frac{-2}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=2 x=-\frac{1}{3}
Tenglama yechildi.
x=-\frac{1}{3}
x qiymati 2 teng bo‘lmaydi.
3x\left(x-2\right)-1=-\left(x-1\right)
x qiymati 2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-2 ga, x-2,2-x ning eng kichik karralisiga ko‘paytiring.
3x^{2}-6x-1=-\left(x-1\right)
3x ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-6x-1=-x+1
x-1 teskarisini topish uchun har birining teskarisini toping.
3x^{2}-6x-1+x=1
x ni ikki tarafga qo’shing.
3x^{2}-5x-1=1
-5x ni olish uchun -6x va x ni birlashtirish.
3x^{2}-5x=1+1
1 ni ikki tarafga qo’shing.
3x^{2}-5x=2
2 olish uchun 1 va 1'ni qo'shing.
\frac{3x^{2}-5x}{3}=\frac{2}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}-\frac{5}{3}x=\frac{2}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{5}{6}\right)^{2}
-\frac{5}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{6} olish uchun. Keyin, -\frac{5}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{2}{3}+\frac{25}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{6} kvadratini chiqarish.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{49}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{2}{3} ni \frac{25}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{5}{6}\right)^{2}=\frac{49}{36}
x^{2}-\frac{5}{3}x+\frac{25}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{6}=\frac{7}{6} x-\frac{5}{6}=-\frac{7}{6}
Qisqartirish.
x=2 x=-\frac{1}{3}
\frac{5}{6} ni tenglamaning ikkala tarafiga qo'shish.
x=-\frac{1}{3}
x qiymati 2 teng bo‘lmaydi.