x uchun yechish
x = \frac{\sqrt{265} + 17}{6} \approx 5,546470099
x=\frac{17-\sqrt{265}}{6}\approx 0,120196567
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x^{2}-12x=4x+x-2
3x ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-12x=5x-2
5x ni olish uchun 4x va x ni birlashtirish.
3x^{2}-12x-5x=-2
Ikkala tarafdan 5x ni ayirish.
3x^{2}-17x=-2
-17x ni olish uchun -12x va -5x ni birlashtirish.
3x^{2}-17x+2=0
2 ni ikki tarafga qo’shing.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 3\times 2}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -17 ni b va 2 ni c bilan almashtiring.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 3\times 2}}{2\times 3}
-17 kvadratini chiqarish.
x=\frac{-\left(-17\right)±\sqrt{289-12\times 2}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-17\right)±\sqrt{289-24}}{2\times 3}
-12 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-17\right)±\sqrt{265}}{2\times 3}
289 ni -24 ga qo'shish.
x=\frac{17±\sqrt{265}}{2\times 3}
-17 ning teskarisi 17 ga teng.
x=\frac{17±\sqrt{265}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{265}+17}{6}
x=\frac{17±\sqrt{265}}{6} tenglamasini yeching, bunda ± musbat. 17 ni \sqrt{265} ga qo'shish.
x=\frac{17-\sqrt{265}}{6}
x=\frac{17±\sqrt{265}}{6} tenglamasini yeching, bunda ± manfiy. 17 dan \sqrt{265} ni ayirish.
x=\frac{\sqrt{265}+17}{6} x=\frac{17-\sqrt{265}}{6}
Tenglama yechildi.
3x^{2}-12x=4x+x-2
3x ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-12x=5x-2
5x ni olish uchun 4x va x ni birlashtirish.
3x^{2}-12x-5x=-2
Ikkala tarafdan 5x ni ayirish.
3x^{2}-17x=-2
-17x ni olish uchun -12x va -5x ni birlashtirish.
\frac{3x^{2}-17x}{3}=-\frac{2}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}-\frac{17}{3}x=-\frac{2}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{17}{3}x+\left(-\frac{17}{6}\right)^{2}=-\frac{2}{3}+\left(-\frac{17}{6}\right)^{2}
-\frac{17}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{17}{6} olish uchun. Keyin, -\frac{17}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{17}{3}x+\frac{289}{36}=-\frac{2}{3}+\frac{289}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{17}{6} kvadratini chiqarish.
x^{2}-\frac{17}{3}x+\frac{289}{36}=\frac{265}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{2}{3} ni \frac{289}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{17}{6}\right)^{2}=\frac{265}{36}
x^{2}-\frac{17}{3}x+\frac{289}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{17}{6}\right)^{2}}=\sqrt{\frac{265}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{17}{6}=\frac{\sqrt{265}}{6} x-\frac{17}{6}=-\frac{\sqrt{265}}{6}
Qisqartirish.
x=\frac{\sqrt{265}+17}{6} x=\frac{17-\sqrt{265}}{6}
\frac{17}{6} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}