Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}-3x=2-2x
3x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-3x-2=-2x
Ikkala tarafdan 2 ni ayirish.
3x^{2}-3x-2+2x=0
2x ni ikki tarafga qo’shing.
3x^{2}-x-2=0
-x ni olish uchun -3x va 2x ni birlashtirish.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-2\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -1 ni b va -2 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-2\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 3}
-12 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 3}
1 ni 24 ga qo'shish.
x=\frac{-\left(-1\right)±5}{2\times 3}
25 ning kvadrat ildizini chiqarish.
x=\frac{1±5}{2\times 3}
-1 ning teskarisi 1 ga teng.
x=\frac{1±5}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{6}{6}
x=\frac{1±5}{6} tenglamasini yeching, bunda ± musbat. 1 ni 5 ga qo'shish.
x=1
6 ni 6 ga bo'lish.
x=-\frac{4}{6}
x=\frac{1±5}{6} tenglamasini yeching, bunda ± manfiy. 1 dan 5 ni ayirish.
x=-\frac{2}{3}
\frac{-4}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=1 x=-\frac{2}{3}
Tenglama yechildi.
3x^{2}-3x=2-2x
3x ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-3x+2x=2
2x ni ikki tarafga qo’shing.
3x^{2}-x=2
-x ni olish uchun -3x va 2x ni birlashtirish.
\frac{3x^{2}-x}{3}=\frac{2}{3}
Ikki tarafini 3 ga bo‘ling.
x^{2}-\frac{1}{3}x=\frac{2}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
-\frac{1}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{6} olish uchun. Keyin, -\frac{1}{6} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{6} kvadratini chiqarish.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{2}{3} ni \frac{1}{36} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{6}\right)^{2}=\frac{25}{36}
x^{2}-\frac{1}{3}x+\frac{1}{36} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{6}=\frac{5}{6} x-\frac{1}{6}=-\frac{5}{6}
Qisqartirish.
x=1 x=-\frac{2}{3}
\frac{1}{6} ni tenglamaning ikkala tarafiga qo'shish.