x uchun yechish
x = -\frac{7}{2} = -3\frac{1}{2} = -3,5
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x^{2}+6x-\left(x+1\right)\left(x-2\right)=2
3x ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+6x-\left(x^{2}-x-2\right)=2
x+1 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+6x-x^{2}+x+2=2
x^{2}-x-2 teskarisini topish uchun har birining teskarisini toping.
2x^{2}+6x+x+2=2
2x^{2} ni olish uchun 3x^{2} va -x^{2} ni birlashtirish.
2x^{2}+7x+2=2
7x ni olish uchun 6x va x ni birlashtirish.
2x^{2}+7x+2-2=0
Ikkala tarafdan 2 ni ayirish.
2x^{2}+7x=0
0 olish uchun 2 dan 2 ni ayirish.
x=\frac{-7±\sqrt{7^{2}}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 7 ni b va 0 ni c bilan almashtiring.
x=\frac{-7±7}{2\times 2}
7^{2} ning kvadrat ildizini chiqarish.
x=\frac{-7±7}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{0}{4}
x=\frac{-7±7}{4} tenglamasini yeching, bunda ± musbat. -7 ni 7 ga qo'shish.
x=0
0 ni 4 ga bo'lish.
x=-\frac{14}{4}
x=\frac{-7±7}{4} tenglamasini yeching, bunda ± manfiy. -7 dan 7 ni ayirish.
x=-\frac{7}{2}
\frac{-14}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=-\frac{7}{2}
Tenglama yechildi.
3x^{2}+6x-\left(x+1\right)\left(x-2\right)=2
3x ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+6x-\left(x^{2}-x-2\right)=2
x+1 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+6x-x^{2}+x+2=2
x^{2}-x-2 teskarisini topish uchun har birining teskarisini toping.
2x^{2}+6x+x+2=2
2x^{2} ni olish uchun 3x^{2} va -x^{2} ni birlashtirish.
2x^{2}+7x+2=2
7x ni olish uchun 6x va x ni birlashtirish.
2x^{2}+7x=2-2
Ikkala tarafdan 2 ni ayirish.
2x^{2}+7x=0
0 olish uchun 2 dan 2 ni ayirish.
\frac{2x^{2}+7x}{2}=\frac{0}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{7}{2}x=\frac{0}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{7}{2}x=0
0 ni 2 ga bo'lish.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=\left(\frac{7}{4}\right)^{2}
\frac{7}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{4} olish uchun. Keyin, \frac{7}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{49}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{4} kvadratini chiqarish.
\left(x+\frac{7}{4}\right)^{2}=\frac{49}{16}
x^{2}+\frac{7}{2}x+\frac{49}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{4}=\frac{7}{4} x+\frac{7}{4}=-\frac{7}{4}
Qisqartirish.
x=0 x=-\frac{7}{2}
Tenglamaning ikkala tarafidan \frac{7}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}